PSCB57 - PROF. HANNO REIN
EXAM PREPARATION

GENERAL TIPPS

- I will test your understanding of concepts, not memorization.
- Be able to transfer existing knowledge to a new area.
- Everything from the lectures, the assignments, and tutorials, can be on the final exam.

GENERAL TIPPS

- No complicated calculations, i.e. no calculator needed.
- If a calculation gets difficult, that might be an indication that you made a mistake.
- If there are many questions, answer the questions that you know first. Keep track of the time.

GENERAL TIPPS

- Don't get confused if a question uses a different symbol than the one we used in the lecture!

GENERAL TIPPS

- It's ok not to answer a question.
- If you do not understand a question or are unsure what is asked for, raise your hand and ask for clarification. Others might have the same problem.

PSCB57 - PROF. HANNO REIN PYTHON

PYTHON

- You should be comfortable with reading short python programs
- Understand control structures (if/for/ while), variables, lists, built-in functions such as len, print, etc.

PYTHON

def $x(l):$

$$
\begin{aligned}
& \mathrm{N}=\operatorname{len}(\mathrm{l}) \\
& \mathrm{r}=-1 \mathrm{e} 307
\end{aligned}
$$

for i in range(N):

$$
\text { if } r<l[i]:
$$

$$
r=1[i]
$$

return r

PYTHON

- No need to know detailed syntax for functions
- No need to worry about getting indices on matrices right
- You're not expected to code up any significant program on paper

PSCB57 - PROF. HANNO REIN

NUMBER FORMATS

NTEGERS

- Fixed number of bits to represent an integer number
- Typical: 16,32, 64 bits
- Finite ranges:
$0.2^{16-1}, 0.2^{32-1}, 0 . .2^{64-1}$ (unsigned)
$-2^{15} . .2^{15}-1,2^{31} . .2^{31}-1,2^{63} .2^{63-1}$ (signed)

INTEGERS

- Python 3 does something special: It automatically increases the number of bits if you run over the range.
- Other programming languages
(including earlier versions of python) behave differently

INTEEERS

What do you use integers for?

- Counters
- Exact calculations

NTEGERS

What are integers not good for?

- Calculations with a large dynamic range (i.e. most scientific applications!)

FLOATING POINT NUMBERS

- Fixed number of bits (64 for double precision that we focussed on)
- Be able to decode simple binary representations of floating point numbers

FLOATING POINT NUMBERS

64 bits

1
52 bits for the mantissa 11 bits for the exponent
1 bit for the sign

$$
x=(-1)^{s} \cdot 2^{e-1023} \cdot(1+m)
$$

FLOATING POINT NUMBERS

Important numbers to remember:

- Range: ~-1e-308...1e+308
- Precision: ~1e-16

FLOATING POINT NUMBERS

When do operations become problematic?

- $1 \mathrm{e}+30+3.4=1 \mathrm{e}+30$
- $1 \mathrm{e}-16+1 \mathrm{e}-19=1.001 \mathrm{e}-16$

FLOATING POINT NUMBERS

How to prepare for the exam?

- Look at the Jupyter notebooks in the course repository.
- Try to convert a few floating point numbers by hand.
- Try to come up with floating point expressions that barely work.

PSCB57 - PROF. HANNO REIN
ALGORITHMIC COMPLEXITY

ALGORITHMIC COMPLEXITY

Idea:

- The time the algorithm takes to complete a calculation depends on some number N
- N can be size of your dataset, number of steps in an integration, or the number of outputs.
- How does the runtime scale for large N?

ALGORITHMIC COMPLEXITY

$$
\begin{aligned}
\text { O(1) } & \text { Constant } \\
\text { O(} \log (N)) & \text { Logarithmic } \\
O(N) & \text { Linear } \\
\text { O(N log(N)) } & \text { Log Linear } \\
O\left(N^{2}\right) & \text { Quadratic } \\
O\left(N^{3}\right) & \text { Cubic } \\
O\left(2^{N}\right) & \text { Exponential }
\end{aligned}
$$

ALGORITHMIC COMPLEXITY

How to determine the complexity of a given piece of code:

- Is it recursive? How many times does it call itself?
- Closely look at for/while loops. Are they nested?
- Focus on the big picture, ignore details.

PSCB57 - PROF. HANNO REIN
LINEAR LEAST SQUARE FIT

LINEAR LEAST SQUARE FIT

Definition: minimize the "sum of squares"

$$
S=\sum_{i=0}^{N-1} e_{i}^{2}
$$

LINEAR LEAST SQUARE FIT

- We have a function with a set of free parameters a.
, Want to parameters a to minimize S.
, This lead us to the matrix equation:

LINEAR LEAST SQUARE FIT

- Where the matrix C depends on the function we want to fit and the datapoints. For example:

$$
f(t)=a_{0}+a_{1} \sin \left(\frac{t}{24} 2 \pi\right)+a_{2} \cos \left(\frac{t}{24} 2 \pi\right)
$$

$\left(\begin{array}{ccc}1 & \sin \left(\frac{x_{0}}{24} 2 \pi\right) & \cos \left(\frac{x_{0}}{24} 2 \pi\right) \\ 1 & \sin \left(\frac{x_{1}}{24} 2 \pi\right) & \cos \left(\frac{x_{1}}{24} 2 \pi\right) \\ & \vdots & \\ 1 & \sin \left(\frac{x_{N-1}}{24} 2 \pi\right) & \cos \left(\frac{x_{N-1}}{24} 2 \pi\right)\end{array}\right)$

LINEAR LEAST SQUARE FIT

- You should be able to construct the matrix C, as well as the vector b and matrix A for arbitrary functions and datapoints.

〉 You are expected to then solve the linear system of equations only if the number of parameters is <=2.

LINEAR LEAST SQUARE FIT

-What does the term linear refer to?

$$
f(t)=a_{0}+a_{1} \sin \left(\frac{t}{24} 2 \pi\right)+a_{2} \cos \left(\frac{t}{24} 2 \pi\right)
$$

(Know when you cannot fit a function using a linear least square fit.

PSCB57 - PROF. HANNO REIN

ROOT FINDING METHODS

Where do we encounter root finding?
Least Square Fit
Optimization methods
Constrained equations

ROOT FINDING METHODS

, Intermedia value theorem.

Guarantees existence of a root.

ROOT FINDING METHODS

- Intermedia value theorem directly leads to the bisection method

Bisection method always works!
Needs starting interval
Reduces interval by half at each step

ROOT FINDING METHODS

How many times do you have to iterate the bisection method when using double floating point precision?

At most 52 times!

ROOT FINDING METHODS

Other root finding methods: Newton's method

Even faster than bisection
Needs a starting point (no interval)
Need to know the derivate of the function.

〉 Might not converge!

ROOT FINDING METHODS

Root finding is a very large topic.
We just scratched the surface.
Our methods work well for 1D
High dimensional problems are MUCH harder

PSCB57 - PROF. HANNO REIN

PLOTIING

PLOTTING

- Non-perceptually uniform colour map

PLOTTING

Perceptually uniform colour map

PSCB57 - PROF. HANNO REIN

NTERPOLATION METHODS

Difference between interpolation and fit Interpolation goes through all data points, independent of any model

Note that plotting data points and connecting them by lines is already an interpolation

INTERPOLATION MEHHODS

- Nearest neighbour / constant interpolation / Voronoi mesh Piece-wise linear interpolation

INTERPOLATION METHODS

, Lagrange interpolation

With basis polynomials

$$
\ell_{j}(x)=\prod_{\substack{0 \leq m \leq N-1 \\ m \neq j}} \frac{x-x_{m}}{x_{j}-x_{m}}=\frac{\left(x-x_{0}\right)}{\left(x_{j}-x_{0}\right)} \cdots \frac{\left(x-x_{j-1}\right)}{\left(x_{j}-x_{j-1}\right)} \frac{\left(x-x_{j+1}\right)}{\left(x_{j}-x_{j+1}\right)} \cdots \frac{\left(x-x_{N-1}\right)}{\left(x_{j}-x_{N-1}\right)}
$$

INTERPOLATION METHODS

Problems with Lagrange interpolation

INTERPOLATION METHODS

- Cubic Spline
- Know the definition: a piecewise cubic polynomial that goes through all datapoints, matched derivatives at datapoints to make it smooth
, You do not need to know: how to derive matrix and how to solve it.

INTERPOLATION METHODS

- You should be able to choose the appropriate interpolation method!

INTERPOLATION METHODS

- You should be able to choose the appropriate interpolation method!

PSCB57 - PROF. HANNO REIN

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS

Definition: A set of equations where the solution is a function.
> We talk about ordinary differential equations in this course.

They have an order, determined by the highest derivative.

DIFFERENTIAL EQUATIONS

- Some differential equations depend explicitly on time, others do not (autonomous)
- In general we write a first order ordinary differential equations in the form

$$
y^{\prime}(t)=F(y, t)
$$

DIFFERENTIAL EQUATIONS

> Note that the names of the variables might differ depending on the problem at hand.

- You need to identify which is the time variable, which is the right hand side, etc

$$
y^{\prime}(t)=F(y, t)
$$

DIFFERENTIAL EQUATIONS

- You can rewrite any high order differential equation as a set of first order differential equations.

This is important because almost all the methods we talked about are for first order differential equations.
> Practice how to do that!

DIFFERENTIAL EQUATIONS

Every differential equations needs initial conditions!

- First order -> 1 initial condition
> Second order -> 2 initial conditions Etc

DIFFERENTIAL EQUATIONS

- We talked about multiple numerical methods to solve differential equations.

All work by splitting the time into very small timesteps dt

The smaller the timestep, the more accurate, but also the more expensive the method

DIFFERENTIAL EQUATIONS

Explicit Euler method

Simplest method possible
1st order

$$
E \sim \frac{1}{2} d t^{2} \cdot \frac{\partial^{2} y}{\partial t^{2}}
$$

DIFFERENTIAL EQUATIONS

Explicit Euler method
Calculate derivative (right hand side) at beginning of time step, multiply with dt , then add to value at beginning.

DIFFERENTIAL EQUATIONS

- Graphical representation of explicit Euler method

DIFFERENTIAL EQUATIONS

Explicit Euler method is rarely ever used.
This is because of the low order. Midpoint method is second order.

Uses a sub-step, effectively combining two Euler steps

DIFFERENTIAL EQUATIONS

Graphical representation of the midpoint method

DIFFERENTIAL EQUATIONS

- Higher order methods can be constructed.
> Often used: 4th or 5th order Runge Kutta

0				
$1 / 2$	$1 / 2$			
$1 / 2$	0	$1 / 2$		
1	0	0	1	
	$1 / 6$	$1 / 3$	$1 / 3$	$1 / 6$

DIFFERENTIAL EQUATIONS

N-body simulations are simulations of N interacting gravitational bodies

- Need to solve a 6*N dimensional coupled differential equation

Difficult because we need very high precision over long timescales

DIFFERENTIAL EQUATIONS

N-body simulations often use advanced integration methods

Either very high order
Or geometric/symplectic integrators which preserve some of the underlying symmetries of the problem.

PSCB57 - PROF. HANNO REIN
MONTE CARLO METHODS

MONTE CARLO METHODS

A random number generator outputs pseudo random numbers on a computer Randomness is hard for the computer

A good random number generator outputs uncorrelated, uniformly distributed random numbers that are hard to predict.

MONTE CARLO METHODS

, Random numbers are used in cryptography

We use them to simplify numerical calculations!

MONTE CARLO METHODS

Calculate pi using random numbers:

MONTE CARLO MEHODS

> In general: use random numbers to calculate an integral:

PSCB57 - PROF. HANNO REIN
BAYES' THEOREM

BAYES' THEOREM

- Very important statical tool.

Derivation is very simple!

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})}
$$

BAYES' THEOREM

, Makes use of conditional probability. The syntax $P(A \mid B)$ means the probability that event A is true given event B is true.

Can use Bayes' theorem to inver the equation to get $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

BAYES' THEOREM

Can apply this to simple statical problems such as the Cookie problem or the Monty Hall problem.

Make sure you know how we did those calculations!

BAYES' THEOREM

Diachronic interpretation
Used in relationship to testing a hypothesis in science using data

Terms in Bayes' Theorem have names. Know them and understand their meaning!

BAYES' THEOREM

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{B})}$ $\mathrm{P}(\mathrm{B})$

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ Posterior
- $P(B \mid A)=$ Likelihood
$P(A)=$ Prior
$P(B)=$ normalization constant

BAYES' THEOREM

Using Bayes' theorem is related to solving a high dimensional integral.

Can use Monte Carlo Methods to do that.
We are randomly sampling the posterior.

PSCB57 - PROF. HANNO REIN

COMING UP...

TUTORIAL TOMORROW

Come to get help with the project.
Run the presentation by me, if you want.
Also can ask questions about any other material from the course.

PROJECT REPORT

Due on December 4th
Can hand it in in paper form or submit it online.

PROJECT PRESENTATIONS

- Will happen on December 4th

All project members need to be present, but not all need to take part in the presentation

- Make sure your computer works if you plan to use the projector
- Make sure you do not run over

