PSCB57 - PROF. HANNO REIN
BAYES'S THEOREM

PLAN:

1. Probability

2. Conditional probability
3. Bayes's theorem
4. Bayesian statistics

PLAN:

1. Probability
2. Conditional probability
3. Bayes's theorem
4. Bayesian statistics
5. Example

PROBABILITY

- A number between 0 and 1
- Represents a degree of belief in a fact or prediction
- 1 means outcome is certainly true
- 0 represents certainty that fact is false

CONDITIONAL PROBABILITY

- A probability based on some background knowledge

CONDITIONAL PROBABILITY

Example: What is the probability of me having a heart attack in the next year?

According to the CDC 785,000 Americans have a heart attack. There are 311 million Americans.

Thus a random person has a heart attach with a probability of 0.3%.

CONDITIONAL PROBABILITY

Obviously not completely random. Age, blood pressure, smoking, etc play a role.

CONDITIONAL PROBABILITY

Notation:

$$
p(A \mid B)
$$

Probability of A given that B is true. A is the prediction. B is a set of conditions.

CONJONTT PROBABLLITY

Fancy way of saying: probability that two things are true.

$$
p(A \text { and } B)
$$

CONJONTT PROBABILITY

Example 1: Tossing two coins

$$
p(A \text { and } B)=p(A) p(B)
$$

Probability that first coin lands face up:

$$
p(A)=0.5
$$

Probability that second coin lands face up:

$$
p(B)=0.5
$$

Works only because coin tosses are independent!

CONJONTT PROBABILITY

Example 2:
A means it rains today. B means it rains tomorrow.

If we know it rained today, then it's more likely that it rains tomorrow.

$$
p(B \mid A)>p(B)
$$

CONJOINT PROBABILITY

In general, the probability of a conjunction:

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

So if the probability that it rains on any given day is 0.5 . Then the probability of it raining on two consecutive days is greater than 0.25.

CONJOINT PROBABILITY

In general, the probability of a conjunction:

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

So if the probability that it rains on any given day is 0.5 . Then the probability of it raining on two consecutive days is greater than 0.25.

COOKIE PROBLEM

Two bowls of cookies.

30 vanilla
10 chocolate
Choose a bowl randomly, then choose a cookie randomly. It's vanilla. What is the probability it came from bowl 1?

COOKIE PROBLEM

This is a hard question! Asking a different question is easy:

What is the probability of a vanilla cookie in bowl 1?
$p($ vanilla|bowl 1) = 3/4 p(bowl 1|vanilla) = ?

BAYES'S THEOREM

Idea: use Bayes's theorem to calculate p(bowl 1|vanilla) = ?

DERIVATION OF BAYES'S THEOREM

Note that:
$p(A$ and $B)=p(B$ and $A)$
Writing down the conjoined probabilities:
$p(A$ and $B)=p(A) p(B \mid A)$
$p(B$ and $A)=p(B) p(A \mid B)$
This gives us:

$$
p(A \mid B)=\frac{p(A) p(B \mid A)}{p(B)}
$$

PSCB57 - PROF. HANNO REIN

BAYES'S THEOREM

COOKIE PROBLEM REVISITED

Let's call B_{1} the hypothesis that the cookie came from bowl 1 and V for vanilla. Bayes's theorem gives us:

$$
p\left(B_{1} \mid V\right)=\frac{p\left(B_{1}\right) p(V \mid B 1)}{p(V)}
$$

COOKIE PROBLEM REVISITED

$$
\begin{aligned}
& \quad p\left(B_{1} \mid V\right)=\frac{p\left(B_{1}\right) p(V \mid B 1)}{p(V)} \\
& p\left(B_{1}\right)=\frac{1}{2} \\
& p\left(V \mid B_{1}\right)=\frac{3}{4} \quad p\left(B_{1} \mid V\right)=\frac{\frac{1}{2} \frac{3}{4}}{\frac{5}{8}}=\frac{3}{5} \\
& p(V)=\frac{5}{8}
\end{aligned}
$$

DIACHRONIC INTERPRETATION

One way of thinking about Bayes's theorem. Suppose we have a hypothesis H and some data D.

$$
p(H \mid D)=\frac{p(H) p(D \mid H)}{p(D)}
$$

These terms now have names and can be interpreted as follows.

DIACHRONIC INTERPRETATION

$p(H \mid D)=\frac{p(H) p(D \mid H)}{p(D)}$
$p(H) \quad$ Prior
$p(H \mid D) \quad$ Posterior
$p(D \mid H) \quad$ Likelihood
$p(D) \quad$ Normalization constant

DIACHRONIC INTERPRETATION

- Prior is subjective. But that is ok as long as you can write it down.
- Likelihood is easy to compute.
- Normalization constant is tricky. Often this is a high dimensional integral. Monte Carlo methods!

MONTY HALL PROBLEM

