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1 Cubic spline interpolation

Instead of going to higher and higher order, there is another way of creating a smooth function that
interpolates data-points. A cubic spline is a piecewise continuous curve that passes through all of the
values of a given dataset. This works particularly well for smooth datasets with no noise. Each of the
piecewise curves is a cubic polynomial with coefficients ai, bi, ci and di:

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di for x ∈ [xi, xi+1]

If we have N data-points, there are N − 1 intervals, hence (N − 1) · 4 coefficients that we need to find.
Two conditions in each interval arise because we have to match the two data-points at each end.

Si(xi) = yi, Si(xi+1) = yi+1

How about the other two parameters? We want to have a smooth function! Thus, we require that the
derivatives of the piecewise functions match at the interval boundaries:

S′i−1(xi) = S′i(xi), S′′i+1(xi) = S′′i (xi)

We now have almost as many conditions as we have free parameters, except at the boundaries.What
could we possibly do there? There are multiple choices and it depends on the problem. We use
one called natural boundary condition which says that we set the second derivatives to zero at the
boundary.

As you can probably guess, this set of equations that we are generating will become a matrix equa-
tion. Let’s go through the individual steps. Finding the value for the dis is simple. Our requirement
gives us

di = Si(xi) = yi

The condition to match the point at i+ 1 gives

Si(xi+1) = ai(xi+1 − xi)3 + bi(xi+1 − xi)2 + ci(xi+1 − xi) + di = yi+1

Let’s call the derivatives at point i, Di, i.e.

S′i(xi) = Di = ci

and therefore

S′i(xi+1) = Di+1 = 3ai(xi+1 − xi)2 + 2bi(xi+1 − xi) +Di
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We can now setup an equation system for a, b, c and d:

ai = (Di+1 +Di)(xi+1 − xi)−2 − 2(yi+1 − yi)(xi+1 − xi)−3

bi = (−Di+1 − 2Di)(xi+1 − xi)−1 + 3(yi+1 − yi)(xi+1 − xi)−2

ci = Di

di = yi

We have one requirement left to play with, to match second derivatives at each interval. This gives us:

S′′i−1(xi) = S′′i (xi)

S′′i (xx+i) = S′′i+1(xi+1)

which equates to

6ai(xi+1 − xi) + 2bi = 2bi+1

Let us now combine this with the earlier equation to get

3(yi − yi−1)(xi − xi−1)−1(xi+1 − xi) + 3(yi+1 − yi)(xi+1 − xi)−1(xi − xi−1)

= Di−1(xi+1 − xi)
+Di(3(xi+1 − xi) + (xi − xi−1))

+Di+1(xi − xi−1)

Let us define

Yi ≡ 3
yi − yi−1
xi − xi−1

(xi+1 − xi) + 3
yi+1 − yi
xi+1 − xi

(xi − xi−1)

We can write this as a matrix equation
. . .

(xi+1 − xi) (3xi+1 − 2xi − xi−1) (xi − xi−1)
. . .

 ·


...
Di

...

 =


...
Yi
...


At the end points, we have not enough information to fully determine all variables. We therefore come
up with new requirements there, let the second derivatives be zero.

S′′0 (x0) = 2b0 = 0

S′′N−2(xN−1) = 6aN−2(xN−1 − xN−2) + 2bN−2 = 0

This gives in terms of the D coefficients:

2D0 +D1 = 3
y1 − y0
x1 − x0

≡ Y0

DN−2 + 2DN−1 = 3
yN−1 − yN−2
xN−1 − xN−2

≡ YN−1
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We can now complete the matrix from above to

2 1 0 · · ·
(x2 − x1) (3x2 − 2x1 − x0) (x1 − x0) 0 · · ·

0 (x3 − x2) (3x3 − 2x2 − x1) (x2 − x1) 0 · · ·
. . .

(xi+1 − xi) (3xi+1 − 2xi − xi−1) (xi − xi−1)
. . .

0 1 2



·



D0

...
Di

...
DN−1

 =



Y0
...
Yi
...

YN−1


This is a tridiagonal system and can easily be solved. Here, we just use the Gaussian eliminiation that
we already know. It is easy to find more efficient ways to solve it, but we don’t bother.

Once solved for the Dis, we can solve for the ai, bi, ci and dis. This then defined all parameters
for the piecewise cubic function.

In the following figure, we apply this method to the average temperature in Toronto. As you can
see, it gives a very smooth and reasonable fit.
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Figure 1: Temperature in Toronto. Cubic spline interpolation.

One way to further improve this spline is to take advantage of the fact that the temperature is
periodic. This removes the extra criteria at the boundaries. The matrix will get some extra components
(i.e. is not tridiagonal anymore).

Now, we have this great spline interpolation method. Can you use it for any problem? No. Here’s
a word of caution. Look at the following dataset.
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Figure 2: Global temperature anomaly. Source: Climatic Research Unit (University of East Anglia).

The above figure shows the global temperature anomaly. This is an indication of climate change.
Clearly, there is a lot of noise in the data. Nevertheless, one can see a very dominant trend towards
higher temperatures. We could just fit a spline to this curve. The result is shown in the following
figure.
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Figure 3: Global temperature anomaly fitted with a cubic spline.

Although the spline is clearly going through all data-points and the curve is smooth at every point
in the interval, it is not a good indication of the trend. Why is that? We have fitted a smooth function
to noisy data. It’s the same issue that we encountered earlier and is sometimes called ringing or
Runge’s phenomenon.

4



Thus, interpolating this data with a constant or piece-wise linear function or even a cubic spline
does not make much sense. We would effectively try to interpolate the noise, not the data. So how
can we interpolate this data in a meaningful way. We can use a least square fit!

For example, a straight line fit will give us an indiction of how fast the temperature anomaly has
risen over time. We can even use it to extrapolate how much temperatures will be rising in the future.
The idea of a straight line fit is to find a linear function

f(x) = a1 + a2x

which is the best fit to the data (see our earlier discussion on least square fits). Figure 4 shows the
straight line for for the climate data discussed above.
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Figure 4: Global temperature anomaly with a straight line fit.
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2 Differential equations

Differential equations are equations where we are solving for a function rather than a variable. For
example, instead of solving for x in a normal algebraic equation such as

a · x = b

we now solve for a function y(t) in a differential equation such as

y(t) = a · ∂y(t)

∂t
.

Differential equations are closely related to integral equations. The differential and the integral opera-
tors are the inverse of each other. So for every differential equation there is one corresponding integral
equation. For the above example, this would be∫

y(t) dt = a · y(t).

We’ll usually work with differential equations rather than integral equations because they are more
intuitive most of the time.

Let’s discuss a few examples of differential equations. For these differential equations we can write
down exact solutions.

Example 1: The following differential equation pops up in a variety of places in biology and
physics:

N(t) = a ·N ′(t).

It says that the growth of the function, N ′(t), is proportional to the value of the function N(t). The
solution is an exponential:

N(t) = N0 · ea·t

Here, N0 is an initial value that is determined by the boundary conditions.
Example 2: The first example leads to a exponentially growing or decreasing function. Another

class of differential equations leads to periodic solutions. For example

m · x′′(t) = −k · x(t)

has a solution

x(t) = A · cos(ωt+ φ) with ω2 =
k

m
.

This is the solution for a harmonic oscillator, a very common problem in physics.
So, let’s go back to the initial conditions. What are these values N0, A and φ? They are given

to you as part of the problem description. For example, in the first example, if you think of N as
the number of creatures in a biology model, then N0 is the number od creatures at the beginning of
the experiment. Similarly, in the second example, the initial position and velocity of your pendulum
determine the constants A and φ.

The unknown function is not entirely specified by the differential equation itself. We also need to
define certain boundary conditions. The nature of the boundary conditions varies depending on the
problem. They can be as simple as requiring that the function has a certain value at t = 0. But they
can also be complex algebraic equations. Different boundary conditions lead to qualitatively different
problems and solutions. There are two main kinds of differential equations.

• The first kind has the boundary conditions specified at one point.

• The second kins has boundary conditions for two points

In this course we will focus on the first kind.
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2.1 Euler Method

The simplest method to solve a differential equation of the form

y′(t) = F (y, t)

is the Euler method. We start from an initial condition consisting of two values, t0 and y0 = y(t0).
We then integrate the equation forward in time, one timestep dt at a time. Often the timestep is also
denoted by the letter h. The size of the timestep determines the precision of the scheme. The smaller
the timestep the higher the accuracy but the more calculations we have to do. This statement is true
not only for the Euler method but for all ODE (ordinary differential equation) solvers.

To perform an Euler step, we evaluate the derivate of the function y(t) at the beginning of the
timestep. For the first timestep, t is t0, for the second timestep t0 + dt, and so on. We then multiply
the derivative with the timestep dt and add it to the initial value y0. If we label subsequent steps with
the index n, then the Euler method can be written as

yn+1 = yn + dt · F (yn, tn).

Note that you can think of the the function y as either a scalar function or a vector function. The
Euler method (and any other ODE solver) works exactly the same in both cases. In other words, it
works in multiple dimensions as well as in just one. This can be used to convert an ODE with a second
order derivative of y into a system of first order derivatives in vector notation. As an example, suppose
we want to solve the ODE

y′′ = F (y)

then we can rewrite this as a vector equation and first derivatives as(
y′

y′′

)
=

(
y′

F (y)

)
and thus (

y
y′

)′
=

(
y′

F (y)

)
or equally

Y ′ = G(Y )

where we introduced new variables Y and the function G.
We now perform an error analysis on the Euler method. We do this to find out how well the Euler

method does, how large the error is and how it depends on the timestep dt. So, let’s go back to our
generic example

y′(t) = F (y, t)

and expand the function y as a Taylor series around the t = t0

y(t) = y0 + (t− t0) · ∂y
∂t

+
1

2
(t− t0)2 · ∂

2y

∂t2
+ · · ·

= y0 + dt · F (y, t) +
1

2
dt2 · ∂

2y

∂t2
+ · · ·

The Euler method gets the first two terms right. The error after one timestep is therefor of the order

E ∼ 1

2
dt2 · ∂

2y

∂t2
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plus higher order terms. The higher order terms will be small if dt is small and the dominant error
term will be of order dt2.

Suppose we want to integrate a system forward in time for some finite time T . Then the number
of timesteps N depends on the size of the timestep dt:

N =
T

dt

The smaller the timestep, the more timesteps we need to take. Thus, the error of the Euler method
after a finite time T is now not of order dt2 anymore, but of order dt. This is an important result. The
Euler method is a first order method. If we reduce the timestep by a factor of two, then the error will
be smaller by a factor of two. This is good because we eventually converge to the correct solution if we
only make the timestep small enough. However, we might hope to find a better method that is more
accurate than the Euler method and converges faster, i.e. quadratically. This is important because
in most situations the evaluation of the function F is very computationally expensive and we want to
minimize the number of evaluations. The Euler method has one function evaluation per timestep.

2.2 Runge-Kutta Methods

As we indicated before, we might be able to cancel out higher order terms in the expansion of y. This
would lead us to a high order scheme which is better and faster than the simple Euler Methods. A
class of higher order methods that is widely used is the class of Runge-Kutta Methods. These methods
use the Euler method to make predictions of y during the timestep and then use this information to
improve the result at the end.

The mid-point method, or second-order Runge-Kutta method, is one such method. The idea is
simple. Let’s first take half an Euler step, to get an estimate of the function F in the middle of the
timestep. Then use this estimate to advance y from the beginning of the timestep to the end. In terms
of equations, it can be written as follows (using the same notation as above):

k1 = dt · F (yn, tn)

k2 = dt · F
(
yn +

1

2
· k1, tn +

1

2
dt

)
yn+1 = yn + k2

Let’s do an error analysis for this method. The Taylor expansion of the function y to third order is

y(t) = y0 + (t− t0) · ∂y
∂t

+
1

2
(t− t0)2 · ∂

2y

∂t2
+

1

3
(t− t0)3 · ∂

3y

∂t3
+ · · · .

An integration step of the mid-point method gives

yn+1 = yn + k2

= yn + dt · F
(
yn +

1

2
· k1, tn +

1

2
dt

)

= yn + dt · F

yn +
1

2
· dt · F (yn, tn)︸ ︷︷ ︸

=y
n+1

2
+O(dt2)

, tn +
1

2
dt


= yn + dt · F

(
yn +

1

2
· dt · F (yn, tn), tn +

1

2
dt

)
︸ ︷︷ ︸

=F
n+1

2
+O(dt2)
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We’ve seen this before. This is the central difference scheme from last lecture (ignoring the higher
order error term). The central difference scheme was used to estimate the derivate of a function. It is
symmetric with respect to a reflection around the mid-point. This makes it higher order (2nd). Here,
this is what makes the mid-point method second order accurate. We now have an error of order O(dt3)
after one timestep. If the error of a scheme is O(dtn+1) after one timestep, then we call the scheme
n−th order.

The most commonly used Runge-Kutta method is the fourth order Runge-Kutta Method, or RK4.
It uses four function evaluations and can be written in a similar way as the mid-point method.

k1 = dt · F (yn, tn)

k2 = dt · F
(
yn +

1

2
· k1, tn +

1

2
dt

)
k3 = dt · F

(
yn +

1

2
· k2, tn +

1

2
dt

)
k4 = dt · F (yn + ·k3, tn + dt)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

As one can show (we won’t) the error after one timestep is O(h5), thus it is indeed a fourth order
method.

There are many different Runge-Kutta scheme. They are usually written in block form. For
example, the coefficients for RK4 can be summarized as

0
1
2

1
2

1
2

1
2

1 1
1
6

1
3

1
3

1
6

Note that the 0’s are not printed in the block form. Similarly, the Euler method can be summarized
as

0
1

And the midpoint method can be summarized as
0
1
2

1
2

0 1
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