
Introduction to Scientific Computing

Lecture 3

Professor Hanno Rein

Last updated: September 25, 2017

Linear equation systems

In the following sections, we will spend some time to solve linear systems of equations. This is a
tool that will come in handy in many different places during this course. For some problems, there
are specialized algorithms available. For example, matrices can be diagonal, sparse or tri-diagonal.
In these cases, optimized algorithms can speed up the calculation dramatically. In our course, we
discuss a general purpose algorithm that can be used to do many tasks related to matrices. The most
important task is to solve the system of linear equations

A · x = b

for x. Here, A is a N×N matrix and x and b are vectors of lengths N . You might have heard of at least
one way to solve this system in a linear algebra course: Gaussian elimination. This would also work on
a computer. However, we can do even better. We’ll implement what is called the LU -decomposition
with the Crout algorithm. But before we go into the algorithm itself, let’s start with an real world
problem where linear equation systems appear: fitting.

0.1 Linear least square fit

One task where one needs to solve a linear set of equations is a least square fit. There is in general no
closed solution for a non-linear least square fit and it requires iteration. In this section we will keep it
simple and only discuss the linear version of a least square fit.

Suppose we are given a set of 500 temperature measurements. The data was taken here at the
UTSC weather station over several months. The figure below shows the temperature as a function of
time of day. One can clearly see a trend, temperatures are warmest around 3pm on an average day.
The above data is given to us as a set of x and y values with N pairs.

1



0 12 24
time of day

10

15

20

25

30

te
m

p
e
ra

tu
re

 [
d
e
g
 C

]

Figure 1: Temperature measurements over several month as a function of time of day. Source: UTSC
weather station, http://weather.utsc.utoronto.ca.

Let us assume the data is described by a function of the following form

f(t) = a0 + a1 sin

(
t

24
2π

)
+ a2 cos

(
t

24
2π

)
We use one hour as the unit of time. Also note that the sin and cos functions expect an argument in
radians, not degrees. This is a convention that we’ll use for the remainder of the course. Finally, note
that we use two sin functions instead of one. We really only want one sin function, but we don’t know
the phase. We can add a phase argument to a sine function, but then the problem would not be linear
anymore. Instead, we use two sine functions and the identity

sin(α+ β) = sinα cosβ + cosα sinβ,

which allows us to convert one sin function with a phase to two sin and cos functions without a phase.
If we had as many unknowns as equations (we have 3 and 500 respectively) we could just write

down the equation system as

y0 = f(x0) = a0 + a1 sin
(x0

24
2π
)

+ a2 cos
(x0

24
2π
)

y1 = f(x1) = a0 + a1 sin
(x1

24
2π
)

+ a2 cos
(x1

24
2π
)

y2 = f(x2) = a0 + a1 sin
(x2

24
2π
)

+ a2 cos
(x2

24
2π
)

or in matrix form y0y1
y2

 =

1 sin
(
x0

242π
)

cos
(
x0

242π
)

1 sin
(
x1

242π
)

cos
(
x1

242π
)

1 sin
(
x2

242π
)

cos
(
x2

242π
)
a0a1

a2

 .

These equations have exactly one solution, but only if we are given exactly 3 data value pairs for 3
unkowns. Most of the times, we have a few unknown parameters (in our case a0, a1 and a2) but are

2



given many more, let’s say N , data value pairs. Then, we have an over-defined system. We solve this
by performing a fit. We want to minimize the average (vertical) distance of any point (xi, yi) from our
function f . One way to do this is a least square fit.

In matrix and vector notation, this relates to
y0
y1
...

yN−1

 =


1 sin

(
x0

242π
)

cos
(
x0

242π
)

1 sin
(
x1

242π
)

cos
(
x1

242π
)

...
1 sin

(xN−1

24 2π
)

cos
(xN−1

24 2π
)


︸ ︷︷ ︸
≡C

a0a1
a2

+


e0
e1
...

eN−1



The values e are errors or residuals. This is what we want to minimize. If we have a perfect fit, ei = 0
for all i. Let us define the total residual as

S =

N−1∑
i=0

e2i

and switch to a slightly more general case: instead of assuming exactly 3 free parameters, we now
assume we have m free parameters. When S is minimized, its gradient vector is zero. The derivatives
of S can be easily calculated (we replace ei by the values from the above matrix equation) to get

0 =
∂S

∂aj
= 2

N−1∑
i=0

ei
∂ei
∂aj

∀j

= 2

N−1∑
i=0

[
yi −

m−1∑
k=0

(akCik)

]
Cij

Rearranging gives

N−1∑
i=0

Cijyi =

N−1∑
i=0

m−1∑
k=0

CikCijak

In matrix notation this is

CT · y︸ ︷︷ ︸
b

=
(
CTC

)︸ ︷︷ ︸
A

·a

We have now a linear equation system. We want to solve it for a, our coefficient a0, a1 and a2 in the
above example. Note that calculating the left side is trivial (it is just a matrix-vector multiplication).
But we need to invert CTC in order to get a. This is what the LU decomposition will do for us.

Before me move on, let’s have a look at the dimensions of the vectors and matrices. The matrix
C has dimensions of N ×m, the vector y is N elements long. Thus the left hand side (and therefore
the right hand side) is a vector of length m. The matrix CTC that we need to invert is only a m×m
matrix. So its size is only determined by the number of free parameters, not the number of data-points
we want to fit. Usually m � N . This is important because the LU decomposition will be slow for
large matricies as it scales as O(m3).

0.2 The LU decomposition algorithm

In this section, we derive the LU decomposition algorithm to solve a general matrix equation of the
form

A · x = b

3



Suppose we could decompose the matrix A into two triangular matrices L and U such that
a00 a01 a02
a10 a11 a12 . . .
a20 a21 a22

...
. . .

 =


1 0 0
l10 1 0 . . .
l20 l21 1

...
. . .

 ·

u00 u01 u02
0 u11 u12 . . .
0 0 u22

...
. . .

 .

(Note that we have chosen lii = 1 for i = 0, . . . N − 1. This is arbitrary, but works nicely in practice
and leads us to the Crout algorithm.) Then we could easily solve

L · y = b

by a simple back-substitution. Then, we can solve

U · x = y

again, with a simple back-substitution.
So how can we get the matrix elements uij and lij from the matrix elements aij? We can write the

above matrix equation in terms of the elements

aij = li0 · u0j + li1 · u1j + . . .

This looks like we didn’t really gain anything. We now have to solve a new set of N2 equations to
solve for uij and lij . However, it turns out it’s easier than you might think. Let’s look at the equation
for different cases. If i < j, then we have

aij = uij +

i−1∑
k=0

lik · ukj .

Or, bringing the sum on the other side, this is equivalent to

uij = aij −
i−1∑
k=0

lik · ukj .

For i > j, we have

aij = lijujj +

j−1∑
k=0

lik · ukj .

Again, we can rewrite this slightly to get

lij =
aij −

∑j−1
k=0 lik · ukj
ujj

.

In our algorithm to compute L and U from A we’ll loop over the rows. This means the outer loop
will be j. The equations from above are:

uij = aij −
i−1∑
k=0

lik · ukj .

lij =
aij −

∑j−1
k=0 lik · ukj
ujj

.

4



When you go through the first few step, you can convince yourself that the left hand side is completely
determined by previously calculated values of lij and uik (aij is known anyway). This procedure is
called Crout’s algorithm.

There is one further nice feature of this algorithm. We only need the elements aij once. That
means we can override the element afterwards and save some memory. This is also called an in place
LU decomposition. However, note that this destroys the original matrix.

So, are we done? Well, there is one very obvious issue with the algorithm. What happens if ujj is
0? The division by zero would break our scheme. But we can fix it. The way we’re fixing it is called
pivoting. This works the same way as in a Gaussian elimination scheme: We simply swap two rows
and always choose the one we’re dividing by to be the element that is the largest. Code 1 implements
the in-place partial pivoting LU decomposition

def swap rows(a,i1,i2):
for k in xrange(len(a)):

temp = a[i1][k]
a[i1][k] = a[i2][k]
a[i2][k] = temp

def lu decomposition(a, indx):
n = len(a)
for j in xrange(n):

for i in xrange(j):
s = a[i][j]
for k in xrange(i):

s −= a[i][k]∗a[k][j]
a[i][j] = s

big = 0.
for i in xrange(j,n):

s = a[i][j]
for k in xrange(j):

s −= a[i][k]∗a[k][j]
a[i][j] = s
temp = math.fabs(s)
if temp >= big:

big = temp
imax = i

if j != imax:
swap rows(a,j,imax)

indx[j] = imax
d = 1./a[j][j]
for i in xrange(j+1,n):

a[i][j] ∗= d

Code 1: LU decomposition with partial pivoting and in-place storage. The helper function swap rows

simply swaps, as the name suggests, two rows in a matrix. Here, a is a square n× nmatrix and indx

is a vector of length n where we store the permutations needed for pivoting.

From here on, we only need to solve the triangular matrices using a simple substitution. Note that
we can do that as often as we like, we only need to do the LU decomposition once. This is one reason
that makes this method so interesting.

5



As mentioned before, we first solve

L · y = b

then

U · x = y.

The only thing worth mentioning is that we need to make sure we undo the row swapping that we did
in the LU decomposition for pivoting. That’s why we saved every swap in the indx array. The code
to do solve the substitutions is shown in Code 2. Note that the original vector b will be overwritten
with the result (x).

def lu substitute(a, indx, b):
n = len(a)
for i in xrange(n):

imax = indx[i]
s = b[imax]
b[imax] = b[i]
for j in xrange(i):

s −= a[i][j]∗b[j]
b[i] = s

for i in reversed(xrange(n)):
for j in xrange(i+1,n):

b[i] −= a[i][j]∗b[j]
b[i] = b[i]/a[i][i]

Code 2: Substitution for the LU decomposition. Expects the L and U matrices in the form produced
by the lu decomposition routing. The array indx must contain any row permutations performed
in the LU decomposition.

6


