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7 Differential equations

Differential equations are equations where we are solving for a function rather than a variable. For
example, instead of solving for x in a normal algebraic equation such as

a · x = b

we now solve for a function y(t) in a differential equation such as

y(t) = a · ∂y(t)

∂t
.

Differential equations are closely related to integral equations. The differential and the integral opera-
tors are the inverse of each other. So for every differential equation there is one corresponding integral
equation. For the above example, this would be∫

y(t) dt = a · y(t).

We’ll usually work with differential equations rather than integral equations because they are more
intuitive most of the time.

Let’s discuss a few examples of differential equations. For these differential equations we can write
down exact solutions.

Example 1: The following differential equation pops up in a variety of places in biology and
physics:

N(t) = a ·N ′(t).

It says that the growth of the function, N ′(t), is proportional to the value of the function N(t). The
solution is an exponential:

N(t) = N0 · ea·t

Here, N0 is an initial value that is determined by the boundary conditions.
Example 2: The first example leads to a exponentially growing or decreasing function. Another

class of differential equations leads to periodic solutions. For example

m · x′′(t) = −k · x(t)

has a solution

x(t) = A · cos(ωt+ φ) with ω2 =
k

m
.
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This is the solution for a harmonic oscillator, a very common problem in physics.
So, let’s go back to the initial conditions. What are these values N0, A and φ? They are given

to you as part of the problem description. For example, in the first example, if you think of N as
the number of creatures in a biology model, then N0 is the number od creatures at the beginning of
the experiment. Similarly, in the second example, the initial position and velocity of your pendulum
determine the constants A and φ.

The unknown function is not entirely specified by the differential equation itself. We also need to
define certain boundary conditions. The nature of the boundary conditions varies depending on the
problem. They can be as simple as requiring that the function has a certain value at t = 0. But they
can also be complex algebraic equations. Different boundary conditions lead to qualitatively different
problems and solutions. There are two main kinds of differential equations.

• The first kind has the boundary conditions specified at one point.

• The second kins has boundary conditions for two points

In this course we will focus on the first kind.

7.1 Euler Method

The simplest method to solve a differential equation of the form

y′(t) = F (y, t)

is the Euler method. We start from an initial condition consisting of two values, t0 and y0 = y(t0).
We then integrate the equation forward in time, one timestep dt at a time. Often the timestep is also
denoted by the letter h. The size of the timestep determines the precision of the scheme. The smaller
the timestep the higher the accuracy but the more calculations we have to do. This statement is true
not only for the Euler method but for all ODE (ordinary differential equation) solvers.

To perform an Euler step, we evaluate the derivate of the function y(t) at the beginning of the
timestep. For the first timestep, t is t0, for the second timestep t0 + dt, and so on. We then multiply
the derivative with the timestep dt and add it to the initial value y0. If we label subsequent steps with
the index n, then the Euler method can be written as

yn+1 = yn + dt · F (yn, tn).

Note that you can think of the the function y as either a scalar function or a vector function. The
Euler method (and any other ODE solver) works exactly the same in both cases. In other words, it
works in multiple dimensions as well as in just one. This can be used to convert an ODE with a second
order derivative of y into a system of first order derivatives in vector notation. As an example, suppose
we want to solve the ODE

y′′ = F (y)

then we can rewrite this as a vector equation and first derivatives as(
y′

y′′

)
=

(
y′

F (y)

)
and thus (

y
y′

)′
=

(
y′

F (y)

)
or equally

Y ′ = G(Y )
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where we introduced new variables Y and the function G.
We now perform an error analysis on the Euler method. We do this to find out how well the Euler

method does, how large the error is and how it depends on the timestep dt. So, let’s go back to our
generic example

y′(t) = F (y, t)

and expand the function y as a Taylor series around the t = t0

y(t) = y0 + (t− t0) · ∂y
∂t

+
1

2
(t− t0)2 · ∂

2y

∂t2
+ · · ·

= y0 + dt · F (y, t) +
1

2
dt2 · ∂

2y

∂t2
+ · · ·

The Euler method gets the first two terms right. The error after one timestep is therefor of the order

E ∼ 1

2
dt2 · ∂

2y

∂t2

plus higher order terms. The higher order terms will be small if dt is small and the dominant error
term will be of order dt2.

Suppose we want to integrate a system forward in time for some finite time T . Then the number
of timesteps N depends on the size of the timestep dt:

N =
T

dt

The smaller the timestep, the more timesteps we need to take. Thus, the error of the Euler method
after a finite time T is now not of order dt2 anymore, but of order dt. This is an important result. The
Euler method is a first order method. If we reduce the timestep by a factor of two, then the error will
be smaller by a factor of two. This is good because we eventually converge to the correct solution if we
only make the timestep small enough. However, we might hope to find a better method that is more
accurate than the Euler method and converges faster, i.e. quadratically. This is important because
in most situations the evaluation of the function F is very computationally expensive and we want to
minimize the number of evaluations. The Euler method has one function evaluation per timestep.
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