ASTC02 - PROF. HANNO REIN
COSMIC DISTANCE LADDER ADAPTED FROM SLIDES BY TERENCE TAO (UCLA)

HOW FAR AWAY IS ...

COSMIC DISTANCE LADDER

- Work out the answer in steps (rungs)
- Starting with short distances ('human scale')
- Calibrate each rung using the previous one
- Ending with distances comparable to the size of the observable universe

9 RUNGS

RUNG 1 - RADIUS OF THE EARTH

ARISTOTLE 384-322 BCE

- Sun is alway opposite of moon during lunar eclipses
- Must be caused by Earth's shadow
- Terminator always a circular arc, independent
 of the position of the Earth and Sun
- Only one object whose projection is always a circle: a sphere.

ERATOSTHENES

276-194 BCE

- Aristoteles already knew that Earth can't be incredibly large: some stars can be seen from Egypt but not from Greece
- A well in Syene, Egypt reflects sun light at noon on June 21
- A well in Eratosthenes' hometown, Alexandria did not reflect the Sun.
- Sun was at a 7 degree angle.
- Once we know the distance between Alexandria and Syene, we know the radius of the Earth!

Summer solstice June $21^{*} / \mathbf{2 2}$

ERATOSTHENES
 276-194 BCE

- Distance between Alexandria and Syene estimates to be 5000 stadia (740 km).
- Used information from trade caravans for the estimate!

- Result: 40,000 stadia (about 6800 km)
- Only 8\% off!

RUNG 2 - RADIUS AND DISTANCE OF THE MOON

ARISTARCHUS 310-230 BCE

- Knew lunar eclipses caused by shadow of Earth
- Shadow size roughly 2 Earth radii
- Many observations show that eclipses take roughly 3 hours
- Moon takes one month to make a full rotation around the Earth
- Distance to the moon about 60 Earth radii

ARISTARCIUS 310-230 BCE

- Have: distance to the Moon.
- Still need: angular size. Idea: measure the time it takes to set.
- 2 minutes $=1 / 720$ of a day
- $1 / 720$ of $360^{\circ}=0.5^{\circ}$
- Basic trigonometry gives the radius of the Moon (1/3 Earth's radius)
- Side problem: Aristarchus did not have an accurate value of π !

RUNG 3 - RADIUS AND DISTANCE OF THE SUN

ARISTARCHUS 310-230 BCE

- Each new Moon appears one lunar month after the previous one
- Aristarchus noticed that a half Moon occurs slightly earlier than the midpoint between a new and a full Moon.
- He estimated 12 hours.
- But is hard to measure precisely.
- True value: $1 / 2$ hour
- Elementary trigonometry gives the distance to the Sun!

HIPPARCHUS PTOLEMY
 190-120 BCE 90-168 CE

- Because of this difficulty, Aristarchus estimates the distance to the Sun to be 20 times the distance Earth-Moon
- Hipparchus and Ptolemy improves the result to 42
- True value is 390
- But important conclusion: Sun is much further away!
- Heliocentric model (1700 years before Copernicus)

RUNG 4 - DISTANCES FROM THE SUN TO THE PLANETS

BABYLONIANS

- Already knew the apparent motion of Mars repeats itself after 780 days
- Called the synodic period

PTOLEMY
 90-168 CE

- Calculation of the distance to Mars already attempted by Ptolemy
- Got inaccurate results because of the error in the Earth-Sun distance:
Sidereal period of 15 years
Distance of 4.1 AU
- True values are 687 days and 1.5 AU

COPERNICUS 1473-1543

- Know synodic period of 780 days
- Copernican model asserts that Earth revolves around Sun in 365 days
- Subtract the two angular velocities to get the Martian sidereal period of 687 days

KEPLER

1571-1630

- Copernicus assumes planets move in perfect circles
- Kepler suspected that was not the case
- Did not match Tycho Brahe's observations

KEPLER

1571-1630

- Calculating the orbit exactly from these observations seemed hopeless - not enough information
- To find the orbit, we need to know Earth's location first (see your lab report for finding asteroid orbits)
- But how can we observe the Earth if we're on it?
- Chicken and egg problem

KEPLER

1571-1630

- Einstein called Kepler's trick an idea of pure genius.
- Use Mars itself as a fixed point of reference to observe Earth!
- Take measurements spaced 687 days apart
- Mars will be at exact same location
- Earth will have moved
- Can now determine Earth's orbit from fixed point of reference!

RUNG 5 - SPEED OF LIGHT

ROMER

1644-1710

- Speed of light can be measured in the lab nowadays.
- First measurement used astronomy
- Rømer observed lo rotating around Jupiter evert 42.5 hours.
- Can be timed exactly by the time moon enters planet's shadow.

1644-1710

- Noticed that period is not uniform depending on relative position of Earth and Jupiter
- When Earth moves away from alignment with Jupiter, period lagged by about 20 minutes.
- Conclusion light needs 20 minutes to travel 2 AU
- True value 17 minutes

1644-1710

- Can invert this method to measure distances to other planets.
- Now, most accurate distance measurements in the Solar system use radar
- But early measurement of finite speed of light led to Maxwell's equation and Einsteins theory of special relativity

RUNG 6 - NEARBY STARS

FRIEDRICH BESSEL 1784-1846

- Parallax method
- Take two observations of a star 6 months apart
- Compare location to stars much further away.
- Simple trigonometry gives distance

FRIENRICH BESSE 1784-1846

- Requires fairly accurate instrument.
- Ironically, ancient Greeks dismissed Aristarchus's heliocentric model, because it implied a parallax of the stars which was not observed.
- GAIA is currently using parallax to map out much of the Milky Way

RUNG 7 - MODERATELY DISTANT STARS

EJNAR HERTZSPRUNG HENRY RUSSELL

- Measure apparent brightness and colour of stars
- Colour of stars is related to absolute magnitude
- Can determine distances up to 300,000 light years.

RUNG 8 - VERY DISTANT STARS

HENRIETIA SWAN LEAVITT

- Certain class of stars, Cepheids, oscillate in brightness
- Absolute brightness is correlated with period
- Cepheids are very bright. Allow for measurements up to 13,000,000 light years
- Can now measure distances to other galaxies

RUNG 9-THE UNIVERSE

EDWIN HUBBLE

1889-1953

- Notice a correlation between an object's distance and its redshift
- Leads to accurate maps of very large distances

ASTC02 - COSMIC DISTANCE LADDER

RUNG 1

RUNG 9

ASTC02 - COSMIC DISTANCE LADDER

A GRAVITATIONAL-WAVE STANDARD SIREN MEASUREMENT OF THE HUBBLE CONSTANT

The ligo Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the Des Collaboration,

The dLt 40 Collaboration, The las Cumbaster Collaboration, et al. the Vinrouge Collaboration, The Master Collaboration, etal

ABSTRACT

The detection of GW170817 (Abbott et al. 2017a) in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) (LIGO Scientific Collaboration et arger of a binary Virgo (Acernese et al. 2015) detectors observed GW170817, a strong (GRB 170817A) was detected neutron-star system. Less than 2 seconds after the merger, a ganived location of the gravitational-wave source within a region of the sky consistent with the LIGO-Vngo et al. 2017). This sky region was subsequently (Abbott et al. 2017b; Goldstein et al. 2017; Savchal. 2017c), resulting in the identification of an optical observed by optical astronomy facilities (Abbott NGC 4993 (Coulter et al. 2017; Soares-Santos et al. 2017; transient signal within ~ 10 arcsec of the galaxy 1 . 2017; Lipunov et al. 2017). These multi-messenger Valenti et al. 2017; Arcavi et al. 2017; Tanvir et alard siren (Schutz 1986; Holz \& Hughes 2005; Dalal et al. observations allow us to use GW170817 as a stand wave analog of an astronomical standard candle, to mea2006; Nissanke et al. 2010, 2013), the gravitational-wase the local expansion rate of the Universe, sets the sure the Hubble constant. This quantity, which repres importance to cosmology. Our measurement combines overall scale of the Universe and is of fundamental ine gravitational-wave signal with the recession velocity the distance to the source inferred purely from the electromagnetic data. This approach does not require inferred from measurements of the redshift using al. 2001); the gravitational-wave (GW) analysis can be any form of cosmic "distance ladder" (Freedman et alogical scales directly, without the use of intermedi-

ASTC02 - COSMIC DISTANCE LADDER

ooservea oy opticar astronomy racinues (Avoout el al. 201/C), resuung in ule raenturcatron or ant optical transient signal within ~ 10 arcsec of the galaxy NGC 4993 (Coulter et al. 2017; Soare These multi-mess 2017 ; Valenti et al. 2017; Arcavi et al. 2017; Tanvir et al. 2017; Lipunov et al. 2017). Thes 2005; Dala observations allow us to use GW170817 as a standard siren (Schutz. 1986; Holz \& 2006; Nissanke et al. 2010, 2013), the gravitational-wave analog of an astronon rate of the Universe, sets sure the Hubble constant. This quantity, which represents the local expanology. Our measurement combines overall scale of the Universe and is of fundamental importance to cosmology. O with the recession vel the distance to the source inferred purely from the gravitational-wave inferred from measurements of the redshift using electron1) the gravitational-wave (GW) analysis can be any form of cosmic "distance ladder" (Freedman et used to estimate the luminosity distance out to co ate astronomical distance measurements. We dervi). This is consistent with existing measurements (Planck (maximum a posterior and 68% credrble interva). while being completely independent of them. Additional Collaboration et al. 2016; Riess et al. 2016), wational-wave sources will provide precision constraints of standard-siren measurements from futtr

