ASTCO2 - LECTURE 1 - PROF. HANNO REIN COORDINATE SYSTEMS

ASTC02 - LECTURE 1 - COORDINATE SYSTEMS

- Need a way to specify the location of celestial objects
van be in 3D or in 2D
, Different coordinate systems exits for different purposes
- Spherical / cartesian, different origins, different orientation
- Can convert between them

HORIZONTAL COORDINATE SYSTEM

- Local observer's horizon is the fundamental plane
- Altitude (alt) / Azimuth (az)
> Azimuth measured from north, increasing towards east
- Altitude from horizon upwards

ASTC02 - LECTURE 1 - COORDINATE SYSTEMS

HORIZONTAL COORDINATE SYSTEM

- Meridian is the line from North to the Zenith to South
- Azimuth 0 and 180

HORIZONTAL COORDINAIE SYSTEM PROS

, Know exactly where to look

HORIZONTAL COORDINATE SYSTEM CONS

> Depends on time and location

EQUATORIAL COORDINATE SYSTEM

- Fundamental plane is the Earth's equator
- primary direction towards the vernal equinox
- Declination (dec) / Right Ascension (ra)

EQUATORIAL COORDINATE SYSTEM PROS

- Fixed stars have fixed coordinates
, Coordinates do not depend on time or date

EQUATORIAL COORDINATE SYSTEM CONS

> Harder to find objects

ANGLES IN ASTRONOMY

- Both coordinate systems use angles
- Multiple way to specify angles:
- Degrees $0^{\circ}-360^{\circ}$
> Radians 0-2п
> Hours Oh-24h

DEGREES

- 1 full circle $=360^{\circ}$
>1 degree $=60$ arc minute $=60^{\prime}$
- 1^{\prime}
$=60$ arc seconds $=60^{\prime \prime}$
> $1^{\prime \prime}$
$=1000$ milli arc seconds $=1000 \mathrm{mas}$
〉 1 mas
$=1000$ micro arc seconds $=1000 \mu \mathrm{as}$

Venus

Type: planet
Magnitude: -4.03 (extincted to: -3.76)
Absclute Magnitude: 27.33
RA/Dec (J20C0.0): $5!128 \mathrm{~m} / 23.11 \mathrm{~s} /+21^{\circ} 20^{\prime} 31.4^{\prime}$
RA/Dec (|2017.6): 5 h $29 \mathrm{~m} 25.19 \mathrm{~s} /+21^{\circ} 21^{\prime} 18.9^{*}$
Hour angle/DE $19 \mathrm{~h} 21 \mathrm{~m} 41.41 \mathrm{~s}^{\prime}+21^{\circ} 22^{\prime} 26.5^{\prime \prime}$ (apparent)
Az!Alt: $+87^{\circ} 25^{\prime} 20.8^{\prime \prime} /+29^{\circ} 07^{\prime} 24.5^{\prime \prime}$ (apparent)
Ecliptic lonqituceflatitude (12000.0): $+82^{\circ} 38^{\prime} 14.4^{\prime \prime} /-1^{\circ} 53^{\prime} 43.7^{\prime \prime}$
Fcilntic longituce/latitude (J2017.6): $+82^{\circ} 52^{\prime} 57.5^{\prime \prime} /-1^{\circ} 53^{\prime} 35.5^{\prime \prime}$
Galactic longitudc/latitude: $-175^{\circ} 38^{\prime} 54.7^{\prime /} / 7^{\circ} 20^{\prime} 58.3^{\prime \prime}$
Otliquity (of date, for Earth): $+23^{\circ} 26^{\prime} 13.2^{\prime \prime}$
Distance: 1.101AU (164.6B1 Mio km)
Apparent ciameter: $+0^{\circ} 00^{\prime} 15.2^{\prime \prime}$
Sidereal period: 224.70 days (0.615 a)
Sidereal day: 5832h28m47.1s
Mean solar day: 2802 hCm52.25
Verus

Phasc Angle: $+63^{\circ} 45^{\prime} 25^{\prime \prime}$
Flongation: $+39^{\circ} 49^{\prime} 08^{\prime \prime}$
Phase: 0.72
Illuminated: 72.1\%

Venus

Type: planet
Magnitude: -4.03 (extincted to: -3.76)
Absolute Magnitude: 27.33
RA/Dec (J2000.0): 5h28m23.11 / + $21^{\circ} 20^{\prime} 31.4^{\prime \prime}$
RA/Dec (J2017.6): 5h29m26.19s, . $=$:
Hour angle/DE: $19 \mathrm{~h} 21 \mathrm{~m} 41.41 \mathrm{~s} /+21^{\circ} 22^{\prime} 26.5^{\prime \prime}$ (apparent)
Az/Alt: $+87^{\circ} 25^{\prime} 20.8^{\prime \prime} /+29^{\circ} 07^{\prime} 24.5^{\prime \prime}$ (apparent)
Ecliptic longitude/latitude (J2000.0): $+82^{\circ} 3^{\prime} 14.4^{\prime \prime} /-1^{\circ} 53^{\prime} 43.7^{\prime \prime}$
Ecliptic longitude/latitude (J2017.6): $+82^{\circ} 52^{\prime} 57.5^{\prime \prime} /-1^{\circ} 53^{\prime} 35.5^{\prime \prime}$
Galactic longitude/latitude: $-175^{\circ} 38^{\prime} 54.7^{\prime \prime} /-7^{\circ} 20^{\prime} 58.3^{\prime \prime}$
Obliquity (of date, for Earth): $+23^{\circ} 26^{\prime} 13.2^{\prime \prime}$
Distance: 1.101AU (164.681 Mio km)
Apparent diameter: $+0^{\circ} 00^{\prime} 15.2^{\prime \prime}$
Sidereal period: 224.70 days (0.615 a)
Sidereal day: 5832h28m47.1s
Mean solar day: 2802 h0m52.2s
Phase Angle: $+63^{\circ} 45^{\prime} 25^{\prime \prime}$
Elongation: $+39^{\circ} 49^{\prime} 08^{\prime \prime}$
Phase: 0.72
Illuminated: 72.1\%

DEGREES, MEASURED BY HAND

HOURS

, 1 full circle $=24 \mathrm{~h}$
, $1 \mathrm{~h}=60$ minutes $=60 \mathrm{~m}$
> 1 m
$=60$ seconds $=60 \mathrm{~s}$

Venus

Type: planet
Magnitude: -4.03 (extincted to: -3.76)
Absolute Magnitude: 27.33

RA/Dec (J2017.6 : 5h29m26.195/ -21 ${ }^{\circ} 21^{\prime} 18.9^{\prime \prime}$
Hour angle/DE: 」ニ. =............ $21^{\circ} 22^{\prime 26.5 " ~(a p p a r e n t) ~}$
Az/Alt: $+87^{\circ} 25^{\prime} 20.8^{\prime \prime} /+29^{\circ} 07^{\prime} 24.5^{\prime \prime}$ (apparent)
Ecliptic longitude/latitude (J2000.0): $+82^{\circ} 3^{\prime} 14.4^{\prime \prime} /-1^{\circ} 53^{\prime} 43.7^{\prime \prime}$
Ecliptic longitude/latitude (J2017.6): $+82^{\circ} 52^{\prime} 57.5^{\prime \prime} /-1^{\circ} 53^{\prime} 35.5^{\prime \prime}$
Galactic longitude/latitude: $-175^{\circ} 38^{\prime} 54.7^{\prime \prime} /-7^{\circ} 20^{\prime} 58.3^{\prime \prime}$
Obliquity (of date, for Earth): $+23^{\circ} 26^{\prime} 13.2^{\prime \prime}$
Distance: 1.101AU (164.681 Mio km)
Apparent diameter: $+0^{\circ} 00^{\prime} 15.2^{\prime \prime}$
Sidereal period: 224.70 days (0.615 a)
Sidereal day: 5832h28m47.1s
Mean solar day: 2802 h0m52.2s
Phase Angle: $+63^{\circ} 45^{\prime} 25^{\prime \prime}$
Elongation: $+39^{\circ} 49^{\prime} 08^{\prime \prime}$
Phase: 0.72
Illuminated: 72.1\%

CONVERSION BETWEEN COORDINATE SYSTEMS

, Not difficult, just two rotations
(Do not remember formula, but do look at it and try to understand it

- To go between RA/DEC and AZ/ALT one also needs
> Time
, Location
- How to specify time? Sidereal time

SIDEREAL TIME

, Which star is on our local meridian?

- Depends on time and date
, Our normal clocks use solar time
- Astronomers are interested in sidereal time
- Local Sidereal Time (LST) is 0 hours when the vernal equinox $(R A=0)$ is on local meridian

SIDEREAL TIME

- Hour angle HA = LST - RA
- Tells you where your object is with respect to the meridian.
- |HA|> 6 hours hard to observe (but depends on declination)

ASTCO2 - LECTURE 1 - PROF. HANNO REIN COORDINATE SYSTEMS

EXAMPLE (WITHOUT THE CELESTIAL SPHERE)

At midnight on 1998 February 4th, LST at St. Andrews was 8h45m.

St. Andrews has longitude $2^{\circ} 48^{\prime} \mathrm{W}$.
What was the Local Hour Angle of Betelgeuse ($R A=5 \mathrm{~h} 55 \mathrm{~m}$) at midnight?

At what time was Betelgeuse on the meridian at St.Andrews?

At what time was Betelgeuse on the meridian at Greenwich?

EXAMPLE

At midnight on 1998 February 4th, LST at St. Andrews was 8h45m.

St. Andrews has longitude $2^{\circ} 48^{\prime} \mathrm{W}$.
What was the Local Hour Angle of
Betelgeuse ($\mathrm{RA}=5 \mathrm{~h} 55 \mathrm{~m}$) at midnight?
At what time was Betelgeuse on the meridian at St.Andrews?

At what time was Betelgeuse on the meridian at Greenwich?

SOLUTIONS

2h 50 m

21h 10 m

20h 59m

PROBLEMS WITH THE ECUATORRIAL SYSTEM

, Equatorial coordinates change slowly
, Timescale 25770 years
v This is because Earth's rotation axis precesses around the orbital plane

- Must also specify Epoch, the standard nowadays is J2000

ASTCO2 - LECTURE 1 - COORDINATE SYSTEMS

GALACTIC COORDINATE SYSTEM

, Earth at centre

- Latitude and longitude
, 0 towards galactic centre

