Migration of propellers in Saturn's rings

Hanno Rein @ ISIMA 20II KIAA Beijing

Symplectic integrators

Observations
Possible explanations

Numerical Integrators

- We want to integrate the equations of motions of a particle

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =a(x, v)
\end{aligned}
$$

- For example, gravitational potential

$$
a(x)=-\nabla \Phi(x)
$$

- In physics, these can usually be derived from a Hamiltonian

$$
H=\frac{1}{2} p^{2}+\Phi(x)
$$

- Symmetries of the Hamiltonian correspond to conserved quantities

Numerical Integrators

- Discretization

$$
\begin{aligned}
& \dot{x}=v \\
& \dot{v}=a(x, v)
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \Delta x=v \Delta t \\
& \Delta v=a(x, v) \Delta t
\end{aligned}
$$

- Hamiltonian

$$
H=\frac{1}{2} p^{2}+\Phi(x) \longrightarrow ?
$$

- The system is governed by a 'discretized Hamiltonian', if and only if the integration scheme is symplectic.
-Why does it matter?

Symplectic vs non symplectic integrators

Mixed variable integrators

- So far: symplectic integrators are great.
- How can it be even better?
- We can split the Hamiltonian:

$$
H=H_{0}+\epsilon H_{\text {pert }}
$$

Integrate particle exactly with dominant Hamiltonian

Integrate particle exactly under perturbation Hamiltonian

- Switch back and forth between different Hamiltonians
- Often uses different variables for different parts
- Then:

$$
\text { Error }=\epsilon(\Delta t)^{p+1}\left[H_{0}, H_{\mathrm{pert}}\right]
$$

Example: Leap-Frog

$$
\begin{array}{r}
H=\frac{1}{2} p^{2}+\Phi(x) \\
\\
\text { Drift Kick }
\end{array}
$$

I/2 Drift
Kick
I/2 Drift

Example: SWIFT/MERCURY

$$
H=\frac{1}{2} p^{2}+\Phi_{\text {Kepler }}(x)+\Phi_{\text {Other }}(x)
$$

I/2 Kick

Kepler
I/2 Kick

Example: Symplectic Epicycle Integrator

$$
H=\frac{1}{2} p^{2}+\Omega(p \times r) e_{z}+\frac{1}{2} \Omega^{2}\left[r^{2}-3\left(r \cdot e_{x}\right)^{2}\right]+\begin{aligned}
& \Phi(r) \\
& \text { Kpicycle }
\end{aligned}
$$

I/2 Kick

Epicycle

I/2 Kick

I0 Orders of magnitude better!

mixed variable, symplectic

Rein \& Tremaine 201I

Conclusions
Part I

Conclusions

Symplectic integrators

Hamiltonian systems exhibit large number of symmetries
These are usually lost in standard integrators (RK)
Symplectic integrators keep symmetries (might be modify slightly)
No secular drift
Excellent performance
Worth thinking about!

Symplectic integrators Observations

Possible explanations

Cassini spacecraft

NASA/JPL/Space Science Institute

Cassini spacecraft

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Observational evidence of non-Keplerian motion

Longitude residual

Mean motion [rad/s]

$$
n=\sqrt{\frac{G M}{a^{3}}}
$$

Mean longitude [rad]

$\lambda=n t$

$$
\lambda(t)-\lambda_{0}(t)=\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime}-\underbrace{\int_{0}^{t} n_{0} d t^{\prime}}_{n_{0} t}
$$

Keplerian rotation: linear

$$
n^{\prime}(t)=\text { const }
$$

$$
\begin{aligned}
& \lambda(t)-\lambda_{0}(t) \\
& =\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime} \\
& -\int_{0}^{t} n_{0} d t^{\prime} \\
& =n_{0} t+n^{\prime} t-n_{0} t=n^{\prime} t
\end{aligned}
$$

Constant migration rate: quadratic

$$
n^{\prime}(t)=\text { const } \cdot t
$$

$$
\begin{aligned}
& \lambda(t)-\lambda_{0}(t) \\
&= \int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime} \\
&-\int_{0}^{t} n_{0} d t^{\prime} \\
&= \frac{1}{2} \text { const } \cdot t^{2}
\end{aligned}
$$

Resonance: sine-curve

$$
n^{\prime}(t)=\cos (t)
$$

$$
\begin{aligned}
& \lambda(t)-\lambda_{0}(t) \\
& =\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime} \\
& -\int_{0}^{t} n_{0} d t^{\prime} \\
& =\sin (t)
\end{aligned}
$$

Random walk

$$
n^{\prime}(t)=\int_{0}^{t} F\left(t^{\prime}\right) d t^{\prime} \quad \begin{aligned}
& \langle F(t)\rangle=0 \\
& \langle F(t) F(t+\Delta t)\rangle=\left\langle F^{2}\right\rangle e^{-\Delta t / \tau_{c}} \\
& \\
& \text { stochastic force }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\left(\lambda(t)-\lambda_{0}(t)\right)^{2}\right\rangle \\
& =\iiint \int_{0}^{t, t^{\prime}, t, t^{\prime \prime \prime}} F\left(t^{\prime \prime}\right) F\left(t^{\prime \prime \prime \prime}\right) d t^{\prime \prime \prime \prime} d t^{\prime \prime \prime} d t^{\prime \prime} d t^{\prime} \\
& =\left\langle F^{2}\right\rangle\left(-2 \tau^{4}+\left(2 \tau^{3} t+2 \tau^{4}+\tau^{2} t^{2}\right) e^{-t / \tau}+\frac{1}{3} \tau t^{3}\right)
\end{aligned}
$$

Random walk

$$
n^{\prime}(t)=\int_{0}^{t} F\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{aligned}
& \left|\lambda(t)-\lambda_{0}(t)\right| \\
& =\sqrt{\frac{\left\langle F^{2}\right\rangle}{\tau}} t^{3 / 2}
\end{aligned}
$$

On average!

Longitude residual (degree)

Observational evidence of non-Keplerian motion

Symplectic integrators
Observations
Possible explanations

Resonance with a moon

PRO

- Produces sine-shaped residual longitude
- Amplitude is a free parameter

CONTRA

- No resonance found
- Cannot fully explain shape of observations
- Other moonlets seem to migrate as well

Modified Type I Migration

- Due to curvature (would be zero in shearing sheet)
- Similar to planetary migration in a gas disk

- No gas pressure
- Migration rate can be calculated analytically

$$
\frac{d r_{m}}{d t}=-35.6 \frac{\Sigma r_{m}^{2}}{M}\left(\frac{m}{M}\right)^{1 / 3} r_{m} \Omega
$$

Modified Type I Migration

PRO

CONTRA

- Tiny migration rate $\sim 20 \mathrm{~cm} /$ year
- Would be a direct observation of type I migration
- Cannot explain shape of observations

Frog resonance

Pan \& Chiang 2010

Frog resonance

PRO

- Predicts largest period very well
- Amplitude is a free parameter

CONTRA

- Unclear if density distribution is like in the toy model (see Eugene's ISIMA project)
- Cannot fully explain shape of observations

Random Walk

Rein \& Papaloizou 2010, Crida et al 2010

Two different approaches

Analytic model

$$
\begin{aligned}
\Delta a & =\sqrt{4 \frac{D t}{n^{2}}} \\
\Delta e & =\sqrt{2.5 \frac{\gamma D t}{n^{2} a^{2}}}
\end{aligned}
$$

Describing evolution in a statistical manner Partly based on Rein \& Papaloizou 2009

N -body simulations
Measuring random forces or integrating moonlet directly Crida et al 2010, Rein \& Papaloizou 2010

Effects contributing to the eccentricity evolution

Laminar collisions

Particles colliding

Laminar horseshoe
Laminar circulating

Equilibrium eccentricity

Particles circulating
Clumps circulating

Damping

Rein \& Papaloizou 2010, Crida et al 2010

... semi-major axis evolution

Particles colliding

Particles horseshoe

Particles circulating

Random walk in semi-major axis

+Net "Type l" migration

Clumps circulating

Damping
Excitation

Random Walk

PRO

- Can explain the shape of the observations very well

CONTRA

- Has only been tested numerically for small moonlets (ISIMA project with Shangfei)
- No metric to test how good it matches the observations

Hybrid Type I Migration / Stochastic Kicks

Tiscareno (in prep)

Hybrid Type I Migration / Stochastic Kicks

PRO

- Can explain all observations very well

CONTRA

- Many free parameters: surface density profile, kicks
- Needs large kicks (maybe not)

Need a metric

Conclusions
Part II

Conclusions

Moonlets in Saturn's rings

Small scale version of the proto-planetary disc
Dynamical evolution can be directly observed
5 different explanations
Might lead to independent age estimate of the ring system

Modified Type I Migration

Hybrid Migration/

Random Walk

Resonance with
a moon

Thank you!

