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Symplectic integrators
Observations
Possible explanations



Numerical Integrators

ẋ = v

v̇ = a(x, v)

• We want to integrate the equations of motions of a particle

• For example, gravitational potential

• In physics, these can usually be derived from a Hamiltonian

• Symmetries of the Hamiltonian correspond to conserved 
quantities

H =
1
2
p
2 + Φ(x)

a(x) = −∇Φ(x)



Numerical Integrators

ẋ = v

v̇ = a(x, v)

• Discretization

• Hamiltonian

• The system is governed by a 'discretized Hamiltonian', if 
and only if the integration scheme is symplectic.

• Why does it matter?

H =
1
2
p
2 + Φ(x)

∆x = v ∆t

∆v = a(x, v) ∆t

?



Symplectic vs non symplectic integrators



Mixed variable integrators

• So far: symplectic integrators are great. 
• How can it be even better?
• We can split the Hamiltonian:

• Switch back and forth between different Hamiltonians
• Often uses different variables for different parts
• Then:

H = H0 + � Hpert

Integrate particle exactly 
with dominant Hamiltonian

Integrate particle exactly 
under perturbation 

Hamiltonian

Error = � (∆t)p+1 [H0, Hpert]



Kick  Drift

Example: Leap-Frog

H =
1
2
p
2 + Φ(x)

1/2 Drift 1/2 DriftKick



Kick  Kepler

Example: SWIFT/MERCURY

1/2 Kick 1/2 KickKepler

H =
1
2
p
2 + ΦKepler(x) + ΦOther(x)



Kick  Epicycle

Example: Symplectic Epicycle Integrator

1/2 Kick 1/2 KickEpicycle

Rein & Tremaine 2011
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1
2
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2
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�
+ Φ(r)



10 Orders of magnitude better!
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Conclusions
Part I



Conclusions

Symplectic integrators
Hamiltonian systems exhibit large number of symmetries
These are usually lost in standard integrators (RK)
Symplectic integrators keep symmetries (might be modify slightly)
No secular drift
Excellent performance
Worth thinking about!



Symplectic integrators
Observations
Possible explanations



Cassini spacecraft

NASA/JPL/Space Science Institute



Cassini spacecraft

NASA/JPL/Space Science Institute



• Propeller is wake of an 
unresolved moon

• Size ~50m-1km

• Most propellers found within 
1000km

• Origins unclear

• Dynamical evolution can be 
observed directly

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006



Observational evidence of non-Keplerian motion

4

Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).

Table 1
Orbit fits for trans-Encke propellers

Longitude Rms deviation

Nickname n,
◦
/day

a a, km
a

at epoch
b

# images
c

Time interval in km in longitude

Earhart 624.529897(2) 133797.8401(3) 57.85
◦

3 2006–2009 (2.7 yr) 730 0.31
◦

Post 624.4867(3) 133803.99(4) 58.09
◦

3 2006–2008 (1.7 yr) 12 0.01
◦

Sikorsky 623.917736(1) 133885.0475(2) 70.37
◦

3 2005–2008 (3.1 yr) 230 0.10
◦

Curtiss 623.7473 133909.36 210.04
◦

2 2006–2008 (1.7 yr)

Lindbergh 623.3176(2) 133970.69(2) 112.08
◦

3 2005–2008 (3.0 yr) 71 0.03
◦

Wright 622.5527 134080.03 251.85
◦

2 2005–2006 (1.3 yr)

Kingsford Smith 620.761649(2) 134336.9350(3) 202.44
◦

4 2005–2008 (2.9 yr) 670 0.28
◦

Hinkler 619.80519(1) 134474.639(2) 58.85
◦

3 2006–2008 (1.3 yr) 360 0.15
◦

Santos-Dumont 619.458729(1) 134524.6067(2) 324.11
◦

9 2005–2009 (4.3 yr) 670 0.28
◦

Richthofen 617.7011 134778.83 122.90
◦

2 2006–2007 (0.3 yr)

Blériot 616.7819329(6) 134912.24521(8) 193.65
◦

89 2005–2009 (4.2 yr) 210 0.09
◦

a
Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.

c
Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-

Tiscareno et al. 2010



Longitude residual

λ(t)− λ0(t) =
� t

0
(n0 + n�(t�)) dt� −

� t

0
n0 dt�

� �� �
n0t
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λ = n t

Mean motion [rad/s]

Mean longitude [rad]



Keplerian rotation: linear
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Constant migration rate: quadratic
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Resonance:  sine-curve
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Random walk

n�(t) =
� t

0
F (t�) dt� �F (t)� = 0

Rein and Papaloizou 2010
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Random walk
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Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).
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◦
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Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.
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Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-

Tiscareno et al. 2010
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Resonance with a moon

Tiscareno et al. 2010

PRO
• Produces sine-shaped 

residual longitude 

• Amplitude is a free 
parameter

CONTRA
• No resonance found

• Cannot fully explain 
shape of observations

• Other moonlets seem 
to migrate as well



Modified Type I Migration

• Due to curvature (would
 be zero in shearing sheet)

• Similar to planetary 
migration in a gas disk

• No gas pressure

• Migration rate can be calculated analytically

946 CRIDA ET AL. Vol. 140
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Figure 1. Trajectories of test particles perturbed by a moonlet of mass
m = 3 × 10−12M , located at (r = rm,φ = 0) (that is at (0, 1) in the plot), in
the frame corotating with the moonlet. Dashed circle: orbit of the moonlet.

m = 3 × 10−12M , starting the particle at an azimuth |φ0| =
3000 rH /rm = 0.3 (where the moonlet is at φ = 0). This angle is
large enough so that at this location the influence of the moonlet
is negligible and the orbital parameters of the test particle are not
disturbed, as will be checked later. We find that the horseshoe
regime occurs for b̂ < 1.8 and the scattered regime occurs
for b̂ > 2.5. For 1.774 < b̂ < 2.503, however, the trajectory
approaches the center of the moonlet to within a distance smaller
than 0.95 rH . In that case, if one assumes the moonlet is a point
mass, the test particle eventually leaves the Hill sphere, either on
a horseshoe or a circulating trajectory, but the outcome changes
several times with increasing b̂. In the case we are concerned
about here, the moonlet most likely almost fills its Roche lobe,
and therefore we stop the integration of the trajectory as soon
as the distance between the test particle and the moonlet is less
than 0.95 rH , assuming a collision.

The specific orbital angular momentum J = r2(dφ/dt) of
the test particles is computed along the trajectories. Angular
momentum is exchanged during the close encounter with the
moonlet. For b̂ ! 2.503, the test particle is scattered onto an
eccentric orbit of larger angular momentum than the initial one,
which results in a gain in angular momentum. The variation
of orbital angular momentum along the trajectory is shown in
the bottom panel of Figure 2 for the case b̂ = 3, where the
top panel is the trajectory. The difference in angular momentum
between the initial circular orbit at φ0 = 0.3 sgn(b) and the
end of the integration, when |φ| = 0.3 again, is noted ∆J . In
the figure, only the interval −0.05 < φ < 0.05 is displayed
for convenience. Most of the exchange of angular momentum
occurs when |φ| < 0.01.

Figure 3 shows |∆J | (top thick curve) as a function of b̂,
in units of the specific angular momentum of the moonlet
Jm = r2

mω. For 0 < b̂ " 1.774, the horseshoe trajectory
corresponds to a U-turn toward the central planet, and to a
loss of angular momentum for the test particle. More precisely,
as for circular orbits J ∝ r1/2, one expects for such a U-turn
∆J/J = 1

2
∆r
r

= −b/rm; this is indeed the case for b̂ < 1.3.
In the case where the test particle collides with the moonlet,
we assume that it gives all its orbital angular momentum to the
moonlet: ∆J = r 2

0 Ω − Jm, so that ∆J/J ≈ b/(2rm). This also
appears in Figure 3. The opposite holds for b < 0.

Computing ∆J as a function of b to numerical precision
enables us to also compute the difference between the inner and
outer disk: δJ (b) = ∆J (b) + ∆J (−b). This quantity is small
with respect to ∆J (b), but nonetheless well determined and
converged in our simulations: ∆J (b) + ∆J (−b) is constant after
the encounter to a precision better than 0.5% for all |φ| > 0.02.
This validates our choice of φ0. In Figure 3, the bottom thick
dashed curve shows δJ in the same scale as |∆J |. We see that
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Figure 2. Top panel: trajectory of a test particle with impact parameter b̂ = 3;
the motion of the particle is toward negative φ. Bottom panel: variation of the
specific orbital angular momentum J of the same particle along its trajectory.
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Figure 3. Angular momentum exchanges during one close encounter as a
function of the impact parameter. Top, thick, red curve: ∆J (b̂), from numerical
simulations. Green, thin, dashed, straight line: ∆J (b̂), as given by Equation (32).
Bottom, thick, dark blue, long-dashed curve: δJ (b̂), from numerical simulations.
Thin, light blue, dash-dotted line: δJ (b̂) as given by Equation (34), taking ∆J
from the simulations. Yellow, thin, double- and triple-dashed lines: (b/rm)Jm,
and (b/2rm)Jm, respectively, to compare with |∆J |.

δJ > 0 for all b > 0 and that δJ % ∆J , with

δJ/∆J ≈ 5 × 10−4 b̂ (4)

for circulating trajectories, and

δJ/|∆J | ≈ 1.17 × 10−4 b̂

for horseshoe orbits. In the following subsection, the empirically
found Equation (4) is analytically derived and justified.

3.2. Analytic Model for the Ring–Moonlet Interaction

In this section, we consider only circulating trajectories.
Developing the exchange of angular momentum during an
encounter with the moonlet ∆J to second order, we can find
the asymmetry δJ .

3.2.1. Solution for the Perturbed Moonlet Orbit

Let us start again from Equations (2) and (3). The ring particle
is assumed to be on an unperturbed circular orbit of radius

Crida et al. 2010
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Accordingly, we evaluate the difference in the magnitude of ∆J
evaluated from orbits equidistant from the moonlet: r0 = rm ± b.
The leading order contribution to ∆J is symmetric in b. The
lowest order contribution is antisymmetric and accordingly
leads to cancellation between the two sides. We make use of the
expansions ξ0 = 2/3−b/(2rm)+O((b/rm)2) and 2Ω/(Ω−ω) =
−4rm/(3b)(1 − b/(4rm)) + O(b/rm) together with standard
properties of Bessel functions to write

∆J = 64(Gm)2rm

243ω3b5
(2K0(2/3) + K1(2/3))2

(
1 + α

b

rm

)
, (32)

where

α = 3
4

+
(6K1(2/3) + 3K0(2/3))
(4K0(2/3) + 2K1(2/3)

= 2.46. (33)

The first-order term of Equation (32) was already given by
Goldreich & Tremaine (1980). It is plotted as a straight green
dashed line in Figure 3. Our expansion to second order enables
us to go further, and to give the expression of the magnitude of
the asymmetry between the two sides of the disk:

δJ

∆J
= 2α|b|/rm = 4.92|b|/rm. (34)

It is such that for an orbit with a given impact parameter, the
angular momentum exchanged in the outer disk is the larger
one.

In the case studied numerically, we had rH = 10−4, so that
|b|/rm = 10−4b̂. Then, Equation (34) remarkably agrees with
the numerical fit (Equation (4)). The light blue dot-dashed curve
in Figure 3 displays 4.92 × 10−4 b̂ ∆J .

In the context of the above, we note that approximations
made in obtaining Equation (31) such as effectively starting and
truncating the interaction at some finite though large distance
from the moonlet could conceivably lead to changes comparable
to those given by Equation (34). However, such changes are
again approximately symmetric for trajectories on both sides of
the moonlet and thus approximately cancel so we do not expect
such effects to significantly alter Equation (34).

3.3. Migration Rate and Discussion

If the surface density of ring particles is Σ, the total rate of
angular momentum transferred to the moonlet is

dJ

dt
= −

∫ ∫

disk
Σ ∆J

|ω − Ω|
2π

dr rdφ, (35)

where the integral is taken over the disk. The particles exterior
to the moonlet contribute negatively while those interior to the
moonlet contribute positively. The cumulative torque exerted by
the moonlet on the region of the ring located within a distance
b to its orbit then reads

Tc(b) =
∫ b

−b

Σ(rm + b′)(∆J (b′))|ω − Ω|db′. (36)

The normalized cumulative torque

Tc(b)
/[

(m/M)4/3(Σ/Mr −2
m

)]

is plotted in Figure 4. The proportionality to Σ is obvious; that
Tc ∝ (m/M)4/3 is numerically verified for 3×10−15 ! m/M !
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Figure 4. Cumulative torque given by Equation (36) exerted by a moonlet on
the region of the ring rm − b < r < rm + b.

3 × 10−9, and has been already found analytically by Ward
(1991) for the horseshoe drag in a similar context.

Most of the total torque comes from scattered, circulating par-
ticles, in particular the ones with the smallest impact parameter
b̂ ≈ 2.5. This makes the total torque sensitive to the physical
size of the moonlet (taken as 0.95 rH here), as some particles
colliding with the moonlet could be circulating if it were smaller.

The role of the horseshoe drag appears to be non-negligible,
amounting to ∼4.1(Σ/Mr −2

m )(m/M)4/3 Mr 2
m ω2. The expres-

sion of Ward (1991) for the torque arising from material execut-
ing horseshoe turns, called the horseshoe drag, is for a Keplerian
disk with a flat density profile:

THS = 9
8

Σw4ω2, (37)

where w is the half-width of the horseshoe region.
In our case, w = 1.774 rH , which gives THS =
2.6 (Σ/Mr −2

m )(m/M)4/3Mr 2
m ω2. The agreement is good be-

cause Ward’s analysis is based only on geometrical effects and
angular momentum variation in a Keplerian disk, without any
pressure effect. Therefore, it also applies in Saturn’s ring. We
remark that taking w = 2rH in Equation (37) gives a perfect
match with what we find numerically for the total horseshoe
drag.

In conclusion, from Figure 4, the total torque felt by a moonlet
of mass m on a circular orbit of radius rm around a planet of
mass M can be written as

T = −17.8
(

Σ
Mr −2

m

)( m

M

)4/3
Mr 2

m ω2. (38)

Note that to get the same dependency of the type I torque in
the parameters of the system, one has to assume h ∝ rH /rm

in Equation (1); however, in a protoplanetary disk, h is fixed
and independent of the mass of the secondary body, so that this
proportionality would not be justified.

The torque is related to the migration speed through T =
0.5 m rmΩ(drm/dt). Hence we deduce that

drm

dt
= −35.6

Σr 2
m

M

( m

M

)1/3
rmΩ. (39)

Here the migration rate is proportional to the mass of the moonlet
to the power 1/3, in contrast to standard type I migration



Modified Type I Migration

Crida et al. 2010

PRO
• Robust 

• Would be a direct 
observation of type I 
migration

CONTRA
• Tiny migration rate

~20 cm/year

• Cannot explain shape of 
observations



Frog resonance

Pan & Chiang 2010

Propeller
Saturn

co-orbital mass

co-orbital mass



Frog resonance

Pan & Chiang 2010

PRO
• Predicts largest

period very well

• Amplitude is a free 
parameter

CONTRA
• Unclear if density 

distribution is like in the 
toy model (see Eugene's 
ISIMA project)

• Cannot fully explain 
shape of observations



Random Walk

Rein & Papaloizou 2010, Crida et al 2010



Two different approaches

Analytic model
Describing evolution in a statistical manner
Partly based on Rein & Papaloizou 2009

N-body simulations
Measuring random forces or integrating moonlet directly
Crida et al 2010, Rein & Papaloizou 2010

∆a =
�

4
Dt

n2

∆e =
�

2.5
γDt

n2a2

Rein & Papaloizou 2010, Crida et al 2010



Effects contributing to the eccentricity evolution 

Laminar collisions

Particles colliding

Laminar circulating 

Laminar horseshoe

Particles circulating

Clumps circulating

Damping Excitation

Equilibrium
eccentricity

Rein & Papaloizou 2010, Crida et al 2010



... semi-major axis evolution 

Particles colliding

Particles horseshoe

Particles circulating

Clumps circulating

Damping Excitation

Random walk 
in semi-major 
axis
+Net “Type I” migration

Rein & Papaloizou 2010, Crida et al 2010



Random Walk

PRO
• Can explain the shape 

of the observations 
very well

CONTRA
• Has only been tested 

numerically for small 
moonlets (ISIMA 
project with Shangfei)

• No metric to test how 
good it matches the 
observations

Rein & Papaloizou 2010



Hybrid Type I Migration / Stochastic Kicks

Tiscareno (in prep)

δΣ/Σ ∼ 3% Type I

Kick

Type I



Hybrid Type I Migration / Stochastic Kicks

PRO
• Can explain all 

observations very well

CONTRA
• Many free parameters: 

surface density profile, 
kicks

• Needs large kicks
 (maybe not)

Tiscareno (in prep)



Need a metric

4

Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).

Table 1
Orbit fits for trans-Encke propellers

Longitude Rms deviation

Nickname n,
◦
/day

a a, km
a

at epoch
b

# images
c

Time interval in km in longitude

Earhart 624.529897(2) 133797.8401(3) 57.85
◦

3 2006–2009 (2.7 yr) 730 0.31
◦

Post 624.4867(3) 133803.99(4) 58.09
◦

3 2006–2008 (1.7 yr) 12 0.01
◦

Sikorsky 623.917736(1) 133885.0475(2) 70.37
◦

3 2005–2008 (3.1 yr) 230 0.10
◦

Curtiss 623.7473 133909.36 210.04
◦

2 2006–2008 (1.7 yr)

Lindbergh 623.3176(2) 133970.69(2) 112.08
◦

3 2005–2008 (3.0 yr) 71 0.03
◦

Wright 622.5527 134080.03 251.85
◦

2 2005–2006 (1.3 yr)

Kingsford Smith 620.761649(2) 134336.9350(3) 202.44
◦

4 2005–2008 (2.9 yr) 670 0.28
◦

Hinkler 619.80519(1) 134474.639(2) 58.85
◦

3 2006–2008 (1.3 yr) 360 0.15
◦

Santos-Dumont 619.458729(1) 134524.6067(2) 324.11
◦

9 2005–2009 (4.3 yr) 670 0.28
◦

Richthofen 617.7011 134778.83 122.90
◦

2 2006–2007 (0.3 yr)

Blériot 616.7819329(6) 134912.24521(8) 193.65
◦

89 2005–2009 (4.2 yr) 210 0.09
◦

a
Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.

c
Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-
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Conclusions
Part II



Conclusions

Moonlets in Saturn’s rings
Small scale version of the proto-planetary disc
Dynamical evolution can be directly observed
5 different explanations
Might lead to independent age estimate of the ring system

Modified Type I 
Migration Random Walk Frog Resonance

Hybrid Migration/
Random Walk

Resonance with 
a moon



Thank you!


