Dynamical evolution of multi-planetary systems and moonlets in Saturn's Rings

 Hanno Rein @ STScl September 20IIMigration in a non-turbulent disc

Multi-planetary systems

planet + disc $=$ migration

2 planets + migration $=$ resonance

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- High mass planets
- Opens gap
- Follows viscous evolution of the disc

Gap opening criteria

Disc scale height

$$
\frac{3}{4} \frac{H}{R_{\text {Hill }}}+\frac{50 M_{*}}{M_{p} \mathcal{R}} \leq 1
$$

Planet mass

Migration - Type III

- High mass disc
- Intermediate planet mass
- Very fast

Non-turbulent resonance capture: two planets

$\phi=2 \lambda_{1}-\lambda_{2}-\varpi_{2}$
parameters of GJ 876

GJ 876

Lee \& Peale 2002

Beta Pictoris

Beta Pictoris

- Debris disc
- Nearby star (19pc)
- Planet, aligned with disc
- Asymmetries in the disc

Non-turbulent resonance capture: dust

Non-turbulent resonance capture: dust

Beta Pictoris

Pantin et al I997, Brandeker et al 2004, Rein \& Brandeker (in prep)

HD 45364

HD45364

Pluto
Mercury
Mars
Venus
Earth
Neptune
Uranus
Saturn

Formation scenario

- Two migrating planets
- Infinite number of resonances
- Migration speed is crucial
- Resonance width and libration period define critical migration rate

Rein, Papaloizou \& Kley 2010

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:I resonance
- Capture into $3: 2$ resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to a better 'fit'

Parameter	Unit	Correia et al. (2009)	Simulation F5 b
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.18720 .6579	0.18720 .6579
M_{*}	M_{\odot}]	0.82	0.82
a	AU]	$0.6813 \quad 0.8972$	$0.6804 \quad 0.8994$
e		$0.17 \pm 0.02 \quad 0.097 \pm 0.012$	$0.036 \quad 0.017$
λ	[deg]	$105.8 \pm 1.4 \quad 269.5 \pm 0.6$	352.5153 .9
ϖ^{a}	[deg]	$162.6 \pm 6.3 \quad 7.4 \pm 4.3$	$87.9 \quad 292.2$
$\sqrt{\chi^{2}}$		$\begin{gathered} 2.79 \\ 2453500 \end{gathered}$	$\begin{gathered} 2.76^{b}(3.51) \\ 2453500 \end{gathered}$
Date	[JD]		

Rein, Papaloizou \& Kley 2010

Migration in a turbulent disc

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk

semi-major axis

time

Rein \& Papaloizou 2009

Correction factors are important

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Adams et al 2009, Rein 2010

Two planets: turbulent resonance capture

Rein \& Papaloizou 2009

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime
but

Modification of libration patterns

- HDI283II has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

Moonlets in Saturn's Rings I. Observations

Cassini spacecraft

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Observational evidence of non-Keplerian motion

Longitude residual

Mean motion [rad/s]

$$
n=\sqrt{\frac{G M}{a^{3}}}
$$

Mean longitude [rad]

$\lambda=n t$

$$
\lambda(t)-\lambda_{0}(t)=\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime}-\underbrace{\int_{0}^{t} n_{0} d t^{\prime}}_{n_{0} t}
$$

Keplerian rotation: linear

$$
n^{\prime}(t)=\text { const }
$$

$$
\begin{aligned}
& \lambda(t)-\lambda_{0}(t) \\
& =\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime} \\
& -\int_{0}^{t} n_{0} d t^{\prime} \\
& =n_{0} t+n^{\prime} t-n_{0} t=n^{\prime} t
\end{aligned}
$$

Constant migration rate: quadratic

$$
n^{\prime}(t)=\text { const } \cdot t
$$

$$
\begin{aligned}
& \lambda(t)-\lambda_{0}(t) \\
&= \int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime} \\
&-\int_{0}^{t} n_{0} d t^{\prime} \\
&= \frac{1}{2} \text { const } \cdot t^{2}
\end{aligned}
$$

Resonance: sine-curve

$$
n^{\prime}(t)=\cos (t)
$$

$$
\begin{aligned}
& \lambda(t)-\lambda_{0}(t) \\
& =\int_{0}^{t}\left(n_{0}+n^{\prime}\left(t^{\prime}\right)\right) d t^{\prime} \\
& -\int_{0}^{t} n_{0} d t^{\prime} \\
& =\sin (t)
\end{aligned}
$$

Random walk

$$
n^{\prime}(t)=\int_{0}^{t} F\left(t^{\prime}\right) d t^{\prime} \quad \begin{aligned}
& \langle F(t)\rangle=0 \\
& \langle F(t) F(t+\Delta t)\rangle=\left\langle F^{2}\right\rangle e^{-\Delta t / \tau_{c}} \\
& \\
& \text { stochastic force }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\left(\lambda(t)-\lambda_{0}(t)\right)^{2}\right\rangle \\
& =\iiint \int_{0}^{t, t^{\prime}, t, t^{\prime \prime \prime}} F\left(t^{\prime \prime}\right) F\left(t^{\prime \prime \prime \prime}\right) d t^{\prime \prime \prime \prime} d t^{\prime \prime \prime} d t^{\prime \prime} d t^{\prime} \\
& =\left\langle F^{2}\right\rangle\left(-2 \tau^{4}+\left(2 \tau^{3} t+2 \tau^{4}+\tau^{2} t^{2}\right) e^{-t / \tau}+\frac{1}{3} \tau t^{3}\right)
\end{aligned}
$$

Random walk

$$
n^{\prime}(t)=\int_{0}^{t} F\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{aligned}
& \left|\lambda(t)-\lambda_{0}(t)\right| \\
& =\sqrt{\frac{\left\langle F^{2}\right\rangle}{\tau}} t^{3 / 2}
\end{aligned}
$$

On average!

Longitude residual (degree)

Observational evidence of non-Keplerian motion

Moonlets in Saturn's Rings

 II. Explanations for non-Keplerian motion
Resonance with a moon

PRO

- Produces sine-shaped residual longitude
- Amplitude is a free parameter

CONTRA

- No resonance found
- Cannot fully explain shape of observations
- Other moonlets seem to migrate as well

Modified Type I migration

- Due to curvature (would be zero in shearing sheet)
- Similar to planetary migration in a gas disc

- No gas pressure
- Migration rate can be calculated analytically

$$
\frac{d r_{m}}{d t}=-35.6 \frac{\Sigma r_{m}^{2}}{M}\left(\frac{m}{M}\right)^{1 / 3} r_{m} \Omega
$$

Modified Type I migration

PRO

CONTRA

- Tiny migration rate $\sim 20 \mathrm{~cm} /$ year
- Would be a direct observation of type I migration
- Cannot explain shape of observations

Frog resonance

Pan \& Chiang 2010

Frog resonance

PRO

- Predicts largest period very well
- Amplitude is a free parameter

CONTRA

- Unclear if density distribution is like in the toy model
- Cannot fully explain shape of observations

Random walk

Rein \& Papaloizou 2010, Crida et al 2010

Two different approaches

Analytic model

$$
\begin{aligned}
\Delta a & =\sqrt{4 \frac{D t}{n^{2}}} \\
\Delta e & =\sqrt{2.5 \frac{\gamma D t}{n^{2} a^{2}}}
\end{aligned}
$$

Describing evolution in a statistical manner Partly based on Rein \& Papaloizou 2009

N -body simulations
Measuring random forces or integrating moonlet directly Crida et al 2010, Rein \& Papaloizou 2010

Effects contributing to the eccentricity evolution

Laminar collisions

Particles colliding

Laminar horseshoe
Laminar circulating

Equilibrium eccentricity

Particles circulating
Clumps circulating

Damping

Rein \& Papaloizou 2010, Crida et al 2010

... semi-major axis evolution

Particles colliding

Particles horseshoe

Particles circulating

Random walk in semi-major axis

+Net "Type l" migration

Clumps circulating

Damping
Excitation

Random walk

PRO

- Can explain the shape of the observations very well

CONTRA

- Has only been tested numerically for small moonlets
- No metric to test how good it matches the observations

Rein \& Papaloizou 2010, Liu \& Rein (in prep)

Hybrid Type I migration / stochastic kicks

Tiscareno (in prep)

Hybrid Type I migration / stochastic kicks

PRO

- Can explain all observations very well

CONTRA

- Many free parameters: surface density profile, kicks
- Needs large kicks (maybe not)

Need a metric

Conclusions

Conclusions

Resonances and multi-planetary systems

Multi-planetary system provide insight in otherwise unobservable formation phase Overwhelming evidence that dissipative effects (disc) shaped many systems Turbulence can be traced by observing orbits of multi-planetary systems Need precise orbital parameters to do that Kepler data is not good enough
Distinctive from non-turbulent migration scenarios, clear signal HD45364 formed in a massive disc

Moonlets in Saturn's rings

Small scale version of the proto-planetary disc
Dynamical evolution can be directly observed
Evolution is most likely dominated by random-walk
Caused by collisions and gravitational wakes
Might lead to independent age estimate of the ring system

REBOUND

A new open source collisional N-body code
http://github.com/hannorein/rebound

