

# Dynamical evolution of multi-planetary systems and moonlets in Saturn's Rings

Hanno Rein @ STScI September 2011

Migration in a non-turbulent disc

## planet + disc = migration

## 2 planets + migration = resonance

Lee & Peale 2002, Kley & Nelson 2008, Sandor et al 2007, Rein et al 2010

### Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc



### Migration - Type II

- High mass planets
- Opens gap
- Follows viscous evolution of the disc





Crida et al 2006

### Migration - Type III

- High mass disc
- Intermediate planet mass
- Very fast



### Non-turbulent resonance capture: two planets



parameters of GJ 876

## GJ 876



Lee & Peale 2002

## Beta Pictoris

### Beta Pictoris

- Debris disc
- Nearby star (19pc)
- Planet, aligned with disc
- Asymmetries in the disc



### Non-turbulent resonance capture: dust



Rein & Brandeker (in preparation)

### Non-turbulent resonance capture: dust



Rein & Brandeker (in preparation)

### **Beta Pictoris**



Pantin et al 1997, Brandeker et al 2004, Rein & Brandeker (in prep)



### HD45364





Correia et al 2009, Visual Exoplanet Catalogue

### Formation scenario

- Two migrating planets
- Infinite number of resonances
- Migration speed is crucial
- Resonance width and libration period define critical migration rate



Rein, Papaloizou & Kley 2010

### Formation scenario for HD45364

### Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:1 resonance
- Capture into 3:2 resonance

#### Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics



#### Rein, Papaloizou & Kley 2010

### Formation scenario leads to a better 'fit'



#### Rein, Papaloizou & Kley 2010

# Migration in a turbulent disc

### Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces



Animation from Nelson & Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

### Random walk



Rein & Papaloizou 2009

### Correction factors are important

$$(\Delta a)^2 = 4\frac{Dt}{n^2}$$

$$(\Delta \varpi)^2 = \frac{2.5}{e^2}\frac{\gamma Dt}{n^2 a^2}$$

$$(\Delta e)^2 = 2.5\frac{\gamma Dt}{n^2 a^2}$$

Rein & Papaloizou 2009, Adams et al 2009, Rein 2010

time [years]

. . . . . . . . .

### Two planets: turbulent resonance capture



Rein & Papaloizou 2009

### Multi-planetary systems in mean motion resonance



- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

Rein & Papaloizou 2009

but

### Modification of libration patterns

- HD128311 has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument



# Moonlets in Saturn's Rings I. Observations

### Cassini spacecraft



NASA/JPL/Space Science Institute

### Propeller structures in A-ring



Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

### Observational evidence of non-Keplerian motion



Tiscareno et al. 2010

### Longitude residual



### Keplerian rotation: linear

$$n'(t) = const$$

$$\begin{split} \lambda(t) &- \lambda_0(t) \\ &= \int_0^t (n_0 + n'(t')) \, dt' \\ &- \int_0^t n_0 \, dt' \\ &= n_0 \, t + n' \, t - n_0 \, t = n' \, t \end{split} \text{Figure 1}$$

time (years)

### Constant migration rate: quadratic

$$n'(t) = const \cdot t$$



time (years)

### Resonance: sine-curve

$$n'(t) = \cos(t)$$



time (years)

### Random walk

$$n'(t) = \int_0^t F(t') dt' \qquad \langle F(t) \rangle = 0$$
  
$$\langle F(t)F(t + \Delta t) \rangle = \langle F^2 \rangle e^{-\Delta t/\tau_c}$$
  
$$\frac{\langle (\lambda(t) - \lambda_0(t))^2 \rangle}{s \text{tochastic force}}$$
  
$$= \iiint \int_0^{t,t',t,t'''} F(t'')F(t'''') dt'''' dt''' dt'' dt''$$
  
$$= \langle F^2 \rangle \left( -2\tau^4 + (2\tau^3t + 2\tau^4 + \tau^2t^2) e^{-t/\tau} + \frac{1}{3}\tau t^3 \right)$$

Rein and Papaloizou 2010

### Random walk



### Observational evidence of non-Keplerian motion



Tiscareno et al. 2010

Moonlets in Saturn's Rings II. Explanations for non-Keplerian motion

### PRO

- Produces sine-shaped residual longitude
- Amplitude is a free parameter

### CONTRA

- No resonance found
- Cannot fully explain shape of observations
- Other moonlets seem to migrate as well

### Modified Type I migration

- Due to curvature (would be zero in shearing sheet)
- Similar to planetary migration in a gas disc



- No gas pressure
- Migration rate can be calculated analytically

$$\frac{dr_m}{dt} = -35.6 \frac{\Sigma r_m^2}{M} \left(\frac{m}{M}\right)^{1/3} r_m \Omega.$$

Crida et al. 2010

### PRO

- Robust
- Would be a direct observation of type I migration

### CONTRA

- Tiny migration rate ~20 cm/year
- Cannot explain shape of observations

### Frog resonance



Pan & Chiang 2010

## PRO

- Predicts largest period very well
- Amplitude is a free parameter

### CONTRA

- Unclear if density distribution is like in the toy model
- Cannot fully explain shape of observations

### Random walk



### Two different approaches

### Analytic model

Describing evolution in a statistical manner Partly based on Rein & Papaloizou 2009



$$\Delta a = \sqrt{4\frac{Dt}{n^2}}$$
$$\Delta e = \sqrt{2.5\frac{\gamma Dt}{n^2 a^2}}$$

#### N-body simulations

Measuring random forces or integrating moonlet directly Crida et al 2010, Rein & Papaloizou 2010





Particles colliding

Laminar horseshoe

Laminar circulating

Particles circulating

**Clumps circulating** 

Damping

Excitation

Equilibrium eccentricity

### ... semi-major axis evolution



Particles horseshoe

Particles circulating

**Clumps circulating** 

Damping

Excitation

Random walk in semi-major axis

+Net "Type I" migration

### Random walk

### PRO

 Can explain the shape of the observations very well

### CONTRA

 Has only been tested numerically for small moonlets

 No metric to test how good it matches the observations

Rein & Papaloizou 2010, Liu & Rein (in prep)

### Hybrid Type I migration / stochastic kicks



Tiscareno (in prep)

### Hybrid Type I migration / stochastic kicks

### PRO

 Can explain all observations very well

### CONTRA

- Many free parameters: surface density profile, kicks
- Needs large kicks (maybe not)

Tiscareno (in prep)

### Need a metric





### Conclusions

#### Resonances and multi-planetary systems

Multi-planetary system provide insight in otherwise unobservable formation phase Overwhelming evidence that dissipative effects (disc) shaped many systems Turbulence can be traced by observing orbits of multi-planetary systems Need precise orbital parameters to do that Kepler data is not good enough Distinctive from non-turbulent migration scenarios, clear signal HD45364 formed in a massive disc

#### Moonlets in Saturn's rings

Small scale version of the proto-planetary disc Dynamical evolution can be directly observed Evolution is most likely dominated by random-walk Caused by collisions and gravitational wakes Might lead to independent age estimate of the ring system

## REBOUND A new open source collisional N-body code

http://github.com/hannorein/rebound